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Abstract

Ride-sourcing or transportation network companies (TNCs) provide on-demand trans-
portation service for compensation, connecting drivers of personal vehicles with passengers
through the use of smartphone applications. This article considers the problem of estimat-
ing the probability distribution of the productivity of a driver as a function of space and
time. We study data consisting of more than 1 million ride-sourcing trips in Austin, Texas,
which are scattered throughout a large graph of 223k vertices, where each vertex represents
a traffic analysis zone (TAZ) at a specific hour of the week. We extend existing methods
for spatial density smoothing on very large general graphs to the spatiotemporal setting.
Our proposed model allows for distinct spatial and temporal dynamics, including different
degrees of smoothness, and it appropriately handles vertices with missing data, which in
our case arise from a fine discretization over the time dimension. Core to our method is an
extension of the Graph-Fused Lasso that we refer to as the Graph-fused Elastic Net (GFEN).

Keywords: spatiotemporal modeling, Graph-fused Lasso, Markov Random Fields, ADMM algo-
rithm, density smoothing, non-parametric density estimation, big data, transportation network
companies, ride-sourcing
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1 Spatiotemporal variation in TNC driver earnings

1.1 Introduction

Ride-sourcing or transportation network companies (TNCs), such as Uber and Lyft, provide
on-demand transportation service for compensation (Shaheen et al., 2016). TNCs operate as
a two-sided market that connects drivers with passengers through the use of mobile applica-
tions. In recent years, TNCs have experienced rapid growth; for example, Uber saw 5.22 billion
trips worldwide in 2018, up from 140 million trips in 2014. This growth has posed several
challenges to transportation planners, policymakers, and researchers—for example, lack of in-
frastructure (e.g., at airports), geographical variation in operating rules and regulations, and
potential changes in travelers’ behavior (Smith, 2019). TNCs have also been the subject of
controversy because of their aggressive business tactics and sometimes complex pricing systems
(Li et al., 2019), whose effects on both rider and driver behavior are not well understood.

In this paper, we address a fundamental statistical question relevant to all these stakeholders:
how best to quantify spatial and temporal variation in TNC driver earnings. Due to a variety
of statistical challenges, which we articulate below, this variation is not well understood—nor
are there good methods for estimating this variation reliably, at the scale and speed needed for
analyzing millions or billions of trips at high spatial and temporal resolution. Our goal in this
paper is to address this gap. Specifically, we present a nonparametric method for estimating the
probability density fs,t, at location s and time t, for the productivity of a TNC driver (defined
roughly as profit per hour and explained in detail below). Our method extends the spatial
density smoothing framework of Tansey et al. (2017) to the spatiotemporal setting. We discuss
the main challenges involved in this extension, and we provide a tool for spatiotemporal density
smoothing based on the Graph-fused Elastic Net (GFEN), which can effectively address these
challenges. We accompany this paper with code written in the Julia programming language1.

We then apply our method using data on more than 1.4 million ride-sourcing trips taken on
RideAustin, a local non-profit TNC in Austin, Texas, during a period in 2016-17 when leading
national TNCs were temporarily out of the city.2 Our analysis results in a number of interesting
findings—many made possible by the fact that our method yields a full probability distribution
of driver earnings as a function of both space and time, giving us access to such distributional
features as quantiles and tail areas. To give two examples:

• The probability that a TNC driver can expect to earn a living wage in Austin (which we
get from Nadeau, 2017) exhibits high variability with respect to space and time. For a
parent of two children who works a typical Saturday late-night near downtown Austin, the
probability of earning a living wage for the Austin area can exceed 90%. But at midday
on a Monday far from the city center, this probability can fall below 40%.

• The bottom 10% of earners among drivers accepting rides at the airport have productivity
below $10/hour in a typical Monday midday. This result is considerably lower than the
living wage in Austin for a single adult with no children.

1.2 Ride-Sourcing Productivity Analysis: Background & Challenges

Spatiotemporal variation in driver earnings is at the heart of many challenges faced both by
the designers of TNC pricing models and by the drivers themselves. For both the TNC and

1https://github.com/mauriciogtec/GraphFusedElasticNet.jl
2Uber and Lyft left the city from May 2016 to May 2017 after the Austin City Council passed an ordinance

requiring ride-hailing companies to perform fingerprint background checks on drivers, a stipulation that already
applies to Austin taxi companies (Samuels, 2017).
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the drivers, a desirable property of a ride-sourcing platform is what Zuniga-Garcia et al. (2019)
call destination invariance, which they define as “the principle that two drivers dispatched on
different trips from the same location at the same time do not envy each other’s expected future
income.” In reality, however, some trip opportunities yield higher continuation payoffs than
others, which implies that at least some trips are mis-priced. From the driver’s perspective, this
mis-pricing can result in needlessly high volatility in driver earnings, and therefore substantial
variation in the likelihood that a driver will earn a living wage.

Moreover, for both the driver and the TNC, such variation can also result in substantial
market efficiencies, potentially impacting service reliability at the level of the whole network
(Ma et al., 2018). For example, drivers may “chase the surge,” avoid short trips, or refuse trips
from particular pick-up locations or within particular time frames, thus leaving riders in some
areas without access to the service.3 Moreover, strategic and/or experienced drivers can learn
how to improve their earnings by predicting profitable times and locations, which exacerbates
disparities in driver earnings and satisfaction, as found by Cook et al. (2018). TNCs respond to
this reality in a variety of ways. For example, Uber and Lyft tried to provide drivers with more
flexibility by adding destination filters, where drivers can select the desired drop-off location
that would allow them to relocate themselves as they preferred (Cradeur, 2019; Lyft, 2019).
However, this feature caused a negative impact on the platform by increasing riders’ waiting
time and other drivers’ pick-up time, as strategic drivers used the filter to select trips with
better-earning potential, leading Uber to cap drivers’ usage of this feature at twice per day
(Perea, 2017).

Recent research efforts have addressed ride-sourcing’s spatial mis-pricing problem by propos-
ing different pricing strategies and driver-passenger matching functions. Some examples that
have been studied include incorporating spatial surge pricing models (He et al., 2018; Bimpikis
et al., 2016), search and matching models (Bian, 2018; Buchholz, 2015; Zha et al., 2018; Cas-
tro et al., 2018), non-linear pricing models (Yang et al., 2010), and spatiotemporal pricing
mechanisms (Ma et al., 2018).

In this paper, we do not explicitly consider the question of how to design a better TNC
pricing model. Rather, we take the perspective that before one can design such pricing models
that mitigate spatiotemporal variation in driver earnings, one must first quantify the extent of
that variation—and we, therefore, seek to provide a scalable, reliable method for doing so. But
this poses a complex set of statistical challenges. First, the availability of public ride-sourcing
data is limited, leading some authors to rely on simulations (Ma et al., 2018; Bimpikis et al.,
2016) or to limit their research to taxi-only data (He et al., 2018; Buchholz, 2015). Second,
when available, spatiotemporal information is subject to noise and high sparsity, where many
combinations of space and time have no or very little data. This has previously led researchers
to aggregate the data into large spatial and/or temporal (e.g. peak vs. off-peak hours) blocks,
as in He et al. (2018), Buchholz (2015), and Bian (2018). This aggregation helps with data
sparsity but compromises the ability to find valuable high-resolution insights. Low spatiotem-
poral resolution owing to data sparsity can be especially problematic when analyzing detailed
pricing scheme consequences. We address this problem by relying on modern spatial smooth-
ing/interpolation techniques that penalize total variation—although, as we describe below, we
must modify these techniques to handle the data-sparsity problem in a way that still yields
sensible interpolations.

Our approach encodes spatiotemporal structure using a graph, where each vertex corre-
sponds to a traffic analysis zone (TAZ)4 at a specific hour of the week, and where edges are

3These examples explain why platforms do not show the trip destination before the driver accepts the ride,
as in Romanyuk (2017) and Campbell (2017).

4TAZs are geographic areas dividing a planning region into relatively similar areas of land use and activity.
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Figure 1: Austin traffic analysis zones (TAZs) classified by area type. Blue lines indicate TAZ
boundaries. The central business district (CBD), which contain the downtown, is shown in
purple.

used to denote geographical and temporal adjacency. Austin TAZs are shown in Figure 1. This
specification results in a graph of 223k vertices, one for each location at a specific time. Our goal
is to estimate a full probability distribution for the productivity of a driver at each one of these
vertices (we provide further details about the construction of the graph in Section 3.3). Owing
to the size of the graph, we shall build upon the scalable spatial density smoothing framework of
Tansey et al. (2017); Zuniga-Garcia et al. (2019) have previously applied this technique to the
RideAustin dataset and showed it to be effective in modeling purely spatial effects. However, in
order to extend this framework to the spatiotemporal setting, we must address two challenges.

The first challenge comes from the question of how to smooth the raw data while still
capturing important spatiotemporal effects. Space and time dimensions have different units
and physical interpretations, suggesting that spatial versus temporal edges must be treated
differently. Moreover, effects in space and time are likely to be a mix of smooth and non-smooth
transitions. For example, the productivity of a driver may change drastically from one side to
another of a highway or a river, but it would most likely be similar or even constant across
highly interconnected regions with no obvious barriers. In the time dimension, by contrast,
effects are more likely to be smooth, and yet there may still be sudden transitions caused by
specific events, such as the increased temporal density of airport arrivals. The challenge here is
to allow for separate but parsimonious spatial and temporal dynamics that incorporate a mix
of both smooth and non-smooth features.

The second challenge arises from the fact that many vertices in our graph will have no data.
For the RideAustin dataset, where we discretize by the hour of the week, 45.8% of the vertices
of the graph have no observations. Every TAZ in our data set had at least one observation at
some point of the week, but many do not have observations for every hour of the week. The
challenge here is to develop a method that can borrow information efficiently across spatial and
temporal adjacencies, estimating a density at every location for every hour, even if no data was
observed.
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1.3 Proposed Methodology

Tansey et al. (2017) propose a non-parametric density estimation technique coupled with the
graph-fused lasso (GFL) to provide highly scalable and parallelizable density estimation for
data distributed across a graph encoding purely spatial adjacencies. Their approach consists of
three steps:

1. Split the overall problem into sub-problems recursively partitioning the variable’s support
into a series of half-spaces, each described by a conditional probability.

2. Smooth each half-space probability across space in such a way that encourages similarity
between adjacent nodes of a graph.

3. Merge the smoothed half-space probabilities to yield full density estimates at each node.

Our proposed methodology will follow this broad outline, with some important differences
in how we handle the smoothing in Step 2. The “ordinary” graph-fused lasso is not appropriate
for our context because it does not distinguish between spatial and temporal edges on the
graph. It is also not ideal for modeling a combination of smooth and non-smooth effects since
the GFL produces estimates that are piece-wise constant across the graph. Finally, and most
importantly, as we shall explain in Section 2, the GFL does not necessarily give sensible results
in missing-data scenarios, since its objective function will no longer be strictly convex in this
case. Ignoring this fact, or resolving it in a naive way, can lead to solutions with undesirable or
counter-intuitive interpolation behavior. To address these limitations, we propose to combine
the traditional `1 total variation penalty used by the GFL with an additional `2 total variation
term, to impose different penalties across spatial and temporal edges. This combination will
have the effect of enabling both smooth and non-smooth transitions. The `2 penalty alone is
essentially equivalent to fitting a Gaussian Markov Random Field (Cressie, 1993); combining
it with the `1 penalty yields something analogous to the elastic net regularization method for
regression (Zou and Hastie, 2005). We call the resulting method the Graph-fused Elastic Net
(GFEN).

Figure 2 gives a quick preview of the performance of this method on the RideAustin data
set. It shows estimated densities using the GFEN method for three locations in Austin:

• The Austin–Bergstrom International Airport (ABIA), located approximately 5 miles south-
east of downtown Austin.

• Downtown area, which we identify with the TAZ containing the intersection of Guadalupe
& 6th Streets, which has very high trip demand.

• Red River at 12th Street, a small TAZ immediately next to downtown but with a low trip
count.

We show reconstructed densities at two selected times: Sunday 3 AM and Monday 1 PM,
which are characterized respectively by high and low demand overall across the city. Figure 2
shows that the method is capable of estimating complicated spatial and temporal interactions—
for example, that these two times exhibit a significant difference in upper-tail thickness for
downtown, but much less so at the airport. The results also show that even with no data
observed at Red River & 12th—which is geographically next to downtown—it is still possible
to interpolate a sensible probably distribution. We emphasize that this would not be possible
using the Graph Fused Lasso, whose objective function is no longer strictly convex in this case.

We will provide an algorithm for implementing the GFEN using a modified version of the
highly-parallelizable ADMM algorithm presented by Tansey and Scott (2015). The resulting
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Figure 2: Shows examples of our density estimation methodology with the GFEN for some
selected locations and hours. The number of data points at each specific location and time is
indicated with n next to each density. Red River & 12th is a small TAZ with few observations
next to downtown. The model borrows information from neighboring regions to estimate a
model in this vertex.

algorithm will still consist of linear time updates and will scale to massive graphs just as its
purely GFL-based counterpart. We present a discussion on the implementation details that is
further detailed in the Appendix.

Our analysis will extend that of Zuniga-Garcia et al. (2019), who used the Graph-fused
Lasso (GFL) to effectively estimate spatial effects on driver productivity. There are three main
differences between their approach and one taken here. First, Zuniga-Garcia et al. (2019) only
estimate spatial effects; and they only treat time by splitting the dataset into peak hours, mid-
day, overnight, and weekend periods. Instead, we consider spatiotemporal effects with fine time
granularity. Second, the authors only estimate mean effects, whereas here we seek full proability
distributions. In particular, we exploit spatiotemporal quantiles and measures of spread learned
from our estimated distributions to enrich our analysis. Finally, they only model the type of
piece-wise constant effects that are well captured by the GFL (Tibshirani et al., 2005), whereas
here we will consider both smooth and non-smooth effects.

1.4 Outline of the Paper

In Section 2 we explain the methodology taken in this paper to solve the key challenges men-
tioned in Subsection 1.2. In Section 3 we implement our proposed methodology to a case study,
the RideAustin dataset, and use it to extract meaningful insights from the data. Finally, Section
4 concludes with some final remarks.

2 Methodology

2.1 Spatiotemporal Graphs and Densities

Undirected graphs are useful for encoding discrete space and time structures. Let G = (V,E)
be an undirected graph where V and E are respectively the set of vertices and edges. We say
that G is a spatiotemporal graph when G has the following structure:

• There is exactly one node for every location and in each moment in time. The vertex
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set can be written as V = S × T where S and T are the sets of locations and times,
respectively. The temporal slice at location s is the set {s} × T and the spatial slice at
time t is the set S × {t}.
• Edges are either spatial or temporal. Thus the set of edges can be written as a disjoint

union E = ES ∪ ET , where ES connects adjacent nodes in the same spatial slice and ET
connects nodes in the same temporal slice.

A spatiotemporal graph is as the Cartesian product graph GS�GT , where GS is a graph en-
coding the spatial structure and GT is a graph encoding the temporal structure (Imrich and
Klavzar, 2000).

At each vertex (s, t) we have a set of observed data

y(s,t) =
{
y
(s,t)
1 , . . . , y

(s,t)

N(s,t)

}
, y

(s,t)
i

iid∼ f(s, t)

where f(s, t) is the density function that we seek to estimate. The goal of spatiotemporal
graph-based density smoothing is to estimate density f(s, t) in a way that borrows information
from neighboring regions as encoded by G. Graph smoothing is particularly useful when N (s,t)

is small or zero in some vertices, and thus independently estimating a model at each vertex of
the graphs leads to poor estimates.

2.2 Density Estimation with a Binary Partition

We now briefly review the technique of estimating a density based on a recursive dyadic parti-
tion, as proposed by Tansey et al. (2017). The assumptions for this approach are:

1. The output space of the data is a known set B so that y(s,t) ⊂ B for all (s, t) ∈ V ;

2. Given a fixed max depth K, we can recursively define a dyadic partitioning scheme as
follows. First, we assume that B can be written as a union of disjoint non-empty sets
B = B0 ∪ B1. Now, for every k ∈ {1, . . . ,K − 1} and for every Bγ where γ ∈ {0, 1}k we
have that Bγ = Bγ0 ∪Bγ1 is a union of disjoint non-empty sets. We refer to Bγ0 and Bγ1
as the left children and right children of Bγ .

The partitioning scheme defines a depth-K binary tree structure on B given by

B(K) :=
K⋃
k=1

{
Bγ | γ ∈ {0, 1}k

}
.

The nodes Bγ where γ ∈ {0, 1}K is of length K are called the terminal nodes or leaves of the
tree. Note that for every k ≤ K we have a decomposition of B into 2k disjoint sets.

B =
⋃

γ∈{0,1}k
Bγ .

To illustrate the idea, suppose B = [0, 1). We could then define B0 = [0, 1/2) and B1 =
[1/2, 1). Similarly, we could write B00 = [0, 1/4), B01 = [1/4, 1/2), B10 = [1/2, 3/4) and
B11 = [3/4, 1) and so on.

Assume now we are given a partition tree B(K) and let Y ∼ f be some random variable
with output space B. Then the goal is to estimate the quantities

ωγ = P (Y ∈ Bγ0 | Y ∈ Bγ)
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which are the probabilities of a data point belonging to the left child Bγ0 provided it belongs to
the parent Bγ . We can use the variables ωγ to give a non-parametric estimate of the probability
distribution of Y on the leaves of tree. The resolution level is determined by the depth of the
tree K. More precisely, for any γ = (γ1, . . . , γK) ∈ {0, 1}K we have

P (Y ∈ Bγ) =

K−1∏
j=0

Bernoulli
(
γj+1 | ω(γ1,...,γj)

)
.

=
K−1∏
j=0

ω
γj+1

(γ1,...,γj)

(
1− ω(γ1,...,γj)

)1−γj+1

.

(1)

We now put the above formulation back into our spatiotemporal model. Define m
(s,t)
γ as the

count of total observations of y(s,t) that fall within Bγ . Then for each non-terminal node Bγ
we have

m
(s,t)
γ0 ∼ Binomial(ω(s,t)

γ ,m(s,t)
γ ) (2)

Expression (2) enables us to estimate the ωγ from the data. We simply have to count the number
of occurrences in each bin and estimate a set of binomial probabilities for the tree structure.
Expression (1) can then be used to recover the full density estimates.

It will be convenient to reparameterize (2) in terms of log-odds with a variable βγ . Thus, for
each vertex (s, t) and for each non-terminal node Bγ the corresponding negative log-likelihood
function used as loss function is

lγ(y(s,t), β(s,t)γ ) := −m(s,t)
γ0 log σ(β(s,t)γ )−mγ1 log(1− σ(β(s,t)γ )). (3)

where σ(βγ) := (1 + exp(−βγ))−1.

2.3 The Graph-fused Lasso and Behavior with Missing Data

In the precedent section, we presented a binomial probability model for the splitting probability
at each node of a tree structure, which corresponds to split step in the split/smooth/merge
approach for density smoothing. For the smoothing step, Tansey et al. (2017) propose to
use the Graph-fused lasso (GFL). We now briefly recall the method. We will also discuss
the complications that will arise with the missing data scenario that is present in the research
problem that we address in this paper. We shall compare the GFL with its counterpart method,
the Gaussian Markov Random Field (GMRF). Our discussion in this section will motivate the
introduction of the Graph-fused Elastic Net (GFEN) in the next section. Since the smoothing
step will be identical for every node Bγ of the tree, we will drop γ from the notation in the
interest of presentation.

The GFL objective The idea of graph-based denoising is to penalize big differences along
edges. Let λ > 0 be a penalization parameter. Then the classical GFL objective is

minimize
β

∑
v∈V

l(y(v), β(v)) + λ
∑
vw∈E

∣∣∣β(v) − β(w)∣∣∣ . (4)

where l is any loss function used to estimate a model. In our case, it will be the loss defined
in expression (3). For spatiotemporal graphs, we will extend this definition to include different
penalization parameters for spatial and temporal edges. In which case, the GFL objective
becomes
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minimize
β

∑
v∈V

l(y(s,t), β(v)) + λS
∑

vw∈ES

∣∣∣β(v) − β(w)∣∣∣+ λT
∑

vw∈ET

∣∣∣β(v) − β(w)∣∣∣ . (5)

The GMRF objective. The Gaussian Markov Random Field approach is very similar,
but instead, it would use a quadratic penalization for the edge differences. Thus the GMRF
objective is

minimize
β

∑
v∈V

l(y(v), β(v)) +
∑
vw∈E

λ
(
β(v) − β(w)

)2
. (6)

and similarly for spatiotemporal graphs

minimize
β

∑
v∈V

l(y(s,t), β(v)) + λS
∑

vw∈ES

(
β(v) − β(w)

)2
+ λT

∑
vw∈ET

(
β(v) − β(w)

)2
. (7)

Both models have been used and studied extensively for smoothing and denoising problems.
We shall not attempt to provide a systematic comparison. However, we will use a simple example
to illustrate the difference between both models, with particular attention to the missing data
case.

Problem 1 (Denoising a small chain graph with missing data). Consider a chain graph with
three vertices V = {1, 2, 3} and two edges E = {e12, e23}. At vertices 1 and 3 we observe the
data points y1 and y3 respectively, assuming wlog that y1 < y3. But at vertex 2 we observe no
data. The loss function we will consider is l(yi, βi) := (yi − βi)2. Given a fixed λ > 0, the
total-variation denoising problem takes the form

minimize
β

(y1 − β1)2 + (y2 − β2)2 + λ (|β2 − β1|p + |β3 − β2|p)

where p = 1 corresponds to the GFl and p = 2 corresponds to the GMRF.

Fact 1 (GFL solution). If λ < 1
2(y3− y1) then there is no unique solution to the GFL objective

(4) and the solution set can be described as

β̂1 = y1 + λ

β̂2 ∈ (β̂1, β̂3)

β̂3 = y3 − λ.

If λ ≥ 1
2(y3 − y1) then there is a unique solution β̂1 = β̂2 = β̂3 = 1

2(y1 + y3) at the midpoint of
the observed data points.

Remark 1. Fact 1 shows that the GFL does not perform any interpolation and therefore there
is no unique solution for the missing data point. A common regularization technique in many
problems is to add a shrinking prior of the form ‖β‖ for some norm ‖ · ‖. We can observe that
in this case it would not be desirable since it would have a strong informative effect and result
in β̂2 being set to the end of the solution interval that is closest to zero.

Remark 2. If we consider the binomial model (2) that is the basis for the density estimation

technique of this paper given by m
(i)
γ0 ∼ Binomial(σ(βγ(i)),m

(i)
γ ). Then the solution will be the

same as in Fact 1 with yi = log(p̂i/(1− p̂i)) and p̂i = m
(i)
γ0)/m

(i)
γ .
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Remark 3. If we consider the two previous remarks together, we see that adding a prior
of the form ‖β‖ would shrink the splitting probabilities towards 1/2. This will result in an
undesirable informative effect of the the binary tree decomposition. For example, a binary tree
with uniformly spread splits inB with even split probabilities will result in a uniform distribution
in B. On the other hand, one can take any distribution f and a partitioning scheme where
the splitting values come from a set of quantiles {qαi(f)} where the quantile probabilities are
uniformly spread in (0, 1). Then having even split probabilities will yield return the distribution
f itself up the the resolution of the tree. Thus, these type of regularization priors are not advised
for the density estimation technique considered in this paper.

Fact 1 also highlights one of the good properties of the GFL. For small values of λ, the
estimation of β1 depends only on y1 and not on y3. On the other hand, for larger values of
λ, the estimates are collapsed, creating flat regions. Intuitively, this is why the GFL estimates
consist of flat regions with discontinuous jumps. We now compare with the solution of the
GMRF.

Fact 2 (GMRF solution). For every λ > 0 the solution set of the GMRF objective (6) is

β̂1 = y1 +
λ

1 + λ
· y3 − y1

2

β̂2 =
β̂1 + β̂3

2

β̂3 = y3 −
λ

1 + λ
· y3 − y1

2
.

Thus the vertex with missing point is assigned to the middle point, regardless of the value of λ.
Moreover, all the points converge to the middle point as λ→∞.

Fact 2 shows two fundamental differences in comparison with the GFL. First, we observe
that the GMRF performs interpolation: regardless of the value of λ, the missing data vertex is
assigned to the middle point of its neighbors. Second, the difference between y1 and y3 deter-
mines the magnitude of the smoothing effect. As a consequence, outliers will have a stronger
impact on the GMRF solution than on the GFL. Also, here β1 and β3 are only asymptotically
converging to the middle point, whereas the GFL would collapse them for high enough value of
λ.

2.4 The Graph-fused Elastic Net (GFEN)

The GFEN is Graph-fused Elastic Net (GFEN) is essentially the combination of the GFL and
GMRF penalties. Since notation can become cumbersome, we introduce the following more
general notation and definition.

Definition 1 (`p-total variation). Given a graph G = (V,E) and a set of scalar parameters
β = {β(v)}v∈V at each vertex of the graph. The `p-total variation of β along a subset of edges
E′ ⊂ E is defined as

TVp(β,E
′) =

∑
vw∈E′

|β(v) − β(w)|p (8)

where p > 0.

Definition 2 (GFEN). Given a graph G = (V,E), and a set of negative log-likelihoods l(y(v), βv)
at each node v ∈ V . The GFEN problem is defined as

minimize
β

∑
v∈V

l(y(v), β(v)) +
∑

p∈{1,2}

λpTVp(β,E) (9)
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where λ1, λ2 > 0 are penalty hyperparameters for each norm. If G is a spatiotemporal graph with
vertex set S×T and spatial and temporal edges ES and ET respectively. Then the spatiotemporal
problem is

minimize
β

∑
(s,t)∈S×T

l(y(s,t), β(s,t)) +
∑

d∈{S,T}

∑
p∈{1,2}

λd,pTVp(β,Ed) (10)

where λS,1, λS,2, λT,1, λT,2 > 0 are the penalty hyperparameters.

To provide further intuition on the effect of combining the norms, we provide the solution
to Problem 1 given by the GFEN.

Fact 3 (GFEN solution). The solution of the GFEN objective (9) for Problem 1 is given by

β̂1 = y1 + λ1 +
λ2

1 + λ2
· y3 − y1

2

β̂2 =
β̂1 + β̂3

2

β̂3 = y3 − λ1 −
λ2

1 + λ2
· y3 − y1

2
.

for all λ1, λ2 ≥ 0 such that

λ1 +
λ2

1 + λ2
· y3 − y1

2
<
y1 + y3

2
.

If the above condition does not hold, then there is a unique solution β̂1 = β̂2 = β̂3 = 1
2(y1 + y3)

at the midpoint of the observed data points. Thus, the GFEN interpolates β̂2 to the middle point
regardless of the smoothing hyperparameters. And it collapses the estimates to a flat region for
high penalties.

The relative weights assigned to the `1 and `2-total variation penalties in expressions (9) and
(10) have a very intuitive interpretation. The ratio to each norm controls the degree of sharpness
and smoothness in the solutions. The GFEN solutions will have both smooth transitions and
piece-wise constant transitions with sharp edges. It will also always interpolate in missing data
vertices. In the context of density estimation with a binary tree, interpolation will remove
the undesired dependence on the splitting values that may arise from shrinking the log-odds
coefficients towards zero. This intermediate behavior is illustrated in Figure 3, which shows a
scenario similar to Problem 1 with missing data vertices on a chain graph.

There is an alternative intuitive interpretation for adding a small extra `2 total variation
regularization. It can be regarded as adding a prior that shrinks the GFL estimates towards
the average estimates of its neighboring vertices, in contrast with the classical shrinking prior
that contracts estimates towards the origin.

2.5 Implementation Details and Model Selection

The GFEN problem (9) can be solved at scale using a variant of the fast algorithm for the GFL
presented by Tansey and Scott (2015). A full derivation is presented in Appendix A. Here we
summarize the main ideas behind this approach:

1. We start from a decomposition of the edges E into a set of non-overlapping trails E =⋃
{τ | τ ∈ T }. The core of the strategy is to reduce the optimization objective to

solving individual smoothing or ”proximal” problems along each trail for each `p penalty

11



(a) GFL (b) GFEN (c) GMRF

Figure 3: Comparison of methods on the estimation of a signal on a chain graph of size N = 150.
The true signal (dashed) is a mix of piece-wise constant and smooth transitions. Data is observed
with noise, with 66% of the vertices having missing data. The GFL (left) does a good job at
estimating the flat regions of the signal. Since a quadratic shrinking penalty was added to
the GFL to ensure the problem is strictly convex due to the missing data, regions with missing
observations are shrunk towards the origin to the closest value with data. The GMRF estimates
a smoother signal but with more sensitivity to large deviations. The behavior of the GFEN is
intermediate between the other two, being piece-wise constant and smooth in the corresponding
regions of the true signal and interpolating in regions with missing data. The hyperparameters
for all models were independently chosen, using cross-validation to maximize the out-of-sample
quadratic error.

separately. This approach is sometimes referred to as ”proximal stacking” (see Barbero
and Sra (2018)). The advantage of doing this is that the optimization problem in each
trail is 1-dimensional and can be solved very efficiently.

2. A principled mathematical way is necessary to combine the solutions in each trail and
guarantee that the original objective is minimized. To do this, we first introduce a slack
variable zτ,p for each trail τ and for each p ∈ {0, 1}. We will require the following linear
constraints which define a consensus problem zτ,p = β[τ ]5 where β is the solution of the
GFEN. We use the ADMM algorithm to solve the consensus problem, which is attractive
because of its flexibility and convergence properties (Boyd et al., 2011). The ADMM is an
iterative technique for solving convex optimization problems of the form minβ,z f(β)+g(z)
subject to a linear constraint of the form Aβ = Bz. Here, f will take the role of the
likelihood and g of the total variation penalty. The variable z will be a concatenation of
each variable zτ,p and the linear constraints will come from the restrictions zβ,τ = β[τ ].
Each iteration of the ADMM will consist of three simple unconstrained optimization
subproblems that only involve one variable at a time.

3. The optimization subproblem corresponding to the update for β can be replaced by an
iteration of Newton’s method. For the updates corresponding to z, which itself will consists
of parallel updates for each zτ,p, we leverage exact linear-time solvers for 1-dimensional
smoothing problems. For p = 1 we use the method of Barbero and Sra (2018) for `1-total
variation denoising and for p = 2 we use the Kalman smoother (see Welch et al. (1995)).

We now discuss the tuning of the penalty hyperparameters. The fact that the GFEN is able
to handle smooth and non-smooth transitions, as well as dealing with differentiated spatial and
temporal dynamics, comes at the expense of increasing the number of hyperparameters to tune.

5This notation is used as follows. A trail τ can be interpreted as a sequence of visited vertices τ = (v1, . . . , vk).
We then define β[τ ] := (β(v1), . . . , β(vk)).
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First, solution path approaches that are typically used to tune the GFL penalty hyperparameters
will no longer be effective, since they are based on gradually increasing the value of a single
hyperparameter (see Tibshirani et al. (2005)). Second, tuning methods based on information
criteria that depend on degrees of freedom (e.g., AIC, BIC) are harder to compute since the
smoothness induced by the additional `2 total variation penalty estimates the effective degrees
of freedom very hard. We propose instead to optimize the hyperparameters using a cross-
validation framework with the out-of-sample negative log-likelihood. To select new candidates
of hyperparameters to test we use strategy of Bayesian optimization (Shahriari et al., 2016),
which is based on modeling the cross-validated loss as a function of the hyperparameters using
a Gaussian Process, which allows to give a prediction for the loss of unseen points, which is
used to select promising candidates. Further details are given in Appendix B.

We found it useful to select the tree splitting scheme based on the quantiles of the global
distribution. It provided more numerical stability since many of the subproblems had more
balanced data. Also, it naturally provides more resolution in values that have higher density.
See Appendix C for further discussion.

2.6 Statistical Background & Related Work

Our methods build on two independent lines of work: first, spatial density smoothing over a
graph; second, extensions of spatial models to spatiotemporal models. We do not attempt to
provide a fully detailed literature review of these mature fields. But we will outline the relevant
work most closely related to our methodological approach.

First, for background on spatial density smoothing over graphs, we refer the reader to the
paper by Tansey et al. (2017), as well as the references therein. Our method is an extension
of their methodology (see the previous section) that uses the same technique of representing
a probability distribution via a recursive dyadic partition. This technique has been widely
used—for example, in multiscale models for Poisson and multinomial estimation (Fryzlewicz
and Nason, 2002; Jansen, 2006; Willett and Nowak, 2007), and in nonparametric Bayesian
inference via Polya-tree priors (Mauldin et al., 1992; Lavine et al., 1992, 1994). Another paper
that we refer the reader to for a review is due to Zhao and Hanson (2011), who take a related
approach by coupling a Polya-tree prior with a conditional autoregressive (CAR) prior in a
fully Bayesian model. The scalable algorithm for spatial denoising over a general graph that we
take as a departure point for this paper is provided by Tansey and Scott (2015), which in turn
builds on computationally efficient estimation for the class of convex optimization problem that
arises from the GFL model, including the papers by Tibshirani and Taylor (2011); Ramdas and
Tibshirani (2016); Wang et al. (2016).

The GFL is related to the technique known as total variation denoising in the signal pro-
cessing literature (Getreuer, 2012). The total variation penalty based on the `1-norm is used
to denoise images by encouraging locally constant effects with sharp edge boundaries. There
are highly scalable algorithms to implement such models for image data, for example, based on
the parametric max-flow algorithm (Hochbaum, 2001; Chambolle and Darbon, 2009). Modeling
spatial effects using total variation denoising with the `2-norm is a special case of a Gaussian
Markov Random Fields (GMRF) (Rue and Held, 2005). GMRFs are also common in the image
denoising literature. A recent linear-time algorithm is provided by Yasuda et al. (2018). GM-
RFs are well-known to promote smooth edges as opposed to the sharp contrasts encouraged by
the `1-norm. Note that these image denoising techniques do not address the problem of full
density estimation since they are primarily concerned with denoising a signal. Moreover, they
are typically designed for rectangular grids, which are common with images and other signal
data.
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In the statistics literature, the GFL is also related to some work in Bayesian inference for
spatial data models. Specifically, it is similar to conditional auto-regressive (CAR) models
(Besag, 1974), which also affect spatial smoothing by discouraging large pairwise differences
across edges in a graph. Bayesian models consider the approach of estimating the density from
the point of view of the posterior predictive density. Non-parametric Bayesian approaches for
density estimation with spatial smoothing were investigated by Gelfand et al. (2005), Reich
and Fuentes (2007), Rodŕıguez et al. (2010), among many others. Also highly related is the
approach by Li et al. (2015), who propose a non-parametric Bayesian model for areal data that
can detect boundaries between spatial neighbors where a sharp change occurs. We refer the
interested readers to these papers and their references for more detail.

We now consider the background work regarding the extension of spatial models to spa-
tiotemporal settings. In the statistics literature, they have been two main approaches for this
task. The first approach consists of treating time as an additional undifferentiated dimension
from space. This approach would typically involve estimating a covariance matrix that includes
both the space and time dimensions, e.g. (Cressie and Huang, 1999; Allcroft and Glasbey,
2003). More generally, this approach can be used for all kernel methods (Bashtannyk and Hyn-
dman, 2001). The drawback of such approaches is that kernel methods depend on a meaningful
distance measure, which is problematic for spatiotemporal modeling since space and time have
different units and physical interpretations.

The second approach within the statistics literature is to use dynamic probabilistic models
(Stroud et al., 2001). In this approach, the parameters of a spatial model are assumed to change
smoothly over time following an auto-regressive model. For example, in (Cressie et al., 2010)
and (Katzfuss and Cressie, 2011), the authors model spatial effects using low-rank basis ap-
proximations to the spatial correlation function and auto-regressive processes for the temporal
dependence. Closely related approaches combining low-rank basis approximation and dynami-
cal models in the fully Bayesian setting can be found in (Katzfuss and Cressie, 2012) and (Finley
et al., 2012). Auto-regressive processes based on the Gaussian distribution are essentially GM-
RFs on the temporal dimension and are related to the Kalman Filter. An example application
of GMRFs for both spatial and temporal effects in disease modeling is given by Rushworth et al.
(2017). As pointed out by Xu et al. (2015), GMRFs have the advantage of being able to deal
with missing observations at some point in time, which is common in geostatistical practice and
is one of the challenges for the RideAustin dataset.

In the video denoising literature, the smooth transitions induced by the GMRF model
inadequately model motion, which has lead to the search for alternative transition distributions
for Markov Random Fields—for example, Chen and Tang (2007) consider estimating a non-
parametric transition distribution for the temporal dimension. Total variation denoising based
on the `1-norm has also been used for video denoising tasks. For a recent survey, we refer
the reader to the introduction of (Arias and Morel, 2018) and (Parisotto and Schönlieb, 2019).
However, similar to the image denoising case, most of these methods are designed to work for a
rectangular grid only and not for general graphs. They are also generally focused on denoising
a signal, and not on density estimation.

3 Case study: Driver Productivity Analysis

3.1 Ride-sourcing data

The non-profit TNC RideAustin, based in Austin, Texas, published data about their ride-
sourcing service in early 2017 (Data World, 2017). The dataset records rides the happened
between June 2nd, 2016, and April 13th, 2017. Each trip corresponds to a row in the database
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and includes information about the origin and destination coordinates, starting and ending
time, driver number, cost and request time. During this period RideAustin had no major
competition since rival companies such as Uber and Lyft were temporarily restricted from
operating in Austin.

Since the demand during the first month was limited, we restricted our analysis on data from
September 1st, 2016 to April 13th, 2017. We selected rides having the origin and destination
coordinates within the traffic analysis zones (TAZs) of Austin.

Since a trip can have different vehicle categories and rates (standard, premium, luxury, and
sport utility vehicle [SUV]), to make every trip comparable, we standardized all of them to
the regular car category using RideAustin’s public pricing formula. We did the same thing to
remove the surge price from some trips. Our motivation for removing the surge price is that
whereas the pricing scheme is known and dependent on standard features such as mileage and
time rates, the surge price onset and offset is less predictable.

3.2 Measuring productivity

To measure driver productivity, we follow the approach suggested by Zuniga-Garcia et al. (2019).
Our productivity measurement, π, is taken prospectively from the driver’s future rides. Consider
a driver serving a rider during the first trip (Trip 1), originated from the pick-up location r ∈ R
to the destination drop-off location s ∈ S, during the ride duration trs. After finishing this trip,
the driver must wait for the system to assign the second trip (Trip 2) at the pick-up location
r∗ ∈ R with a destination location s∗ ∈ S. We then denote:

• Driver-idle time (wsr∗): the time in hours that the driver of Trip 1 will wait until a
subsequent trip is assigned.

• Reach time (pr∗): the time between the trip assignment and the rider pick-up for Trip 2.

• Duration of Trip 2 (tr∗s∗): the time in hours that the same driver will take to complete
the subsequent trip; during this time the driver is generating revenue determined by the
tariff system.

• Fare of Trip 2 (Fr∗s∗): the final fare of the subsequent trip; it is a function of a distance
and a time tariff rate.

Our variable of interest is then defined as

πs :=
Fr∗s∗

wsr∗ + pr∗ + tr∗s∗
(11)

Expression (11) yields an interesting definition of productivity because it combines the time
that the driver will stay unproductive with the quality of the subsequent trips. Moreover, its
values are given naturally in dollars/hour. The idea is that when a trip ends, the driver starts
searching for new riders. This prospective measurement gives the expected earnings given that
a driver is at the specific location and time at which the last trip ended. If a trip ends in a
location of low demand, the idle time will be large, but also subsequent trips could be longer.
We remark that this definition deliberately ignores the fare trip that led to that position. Figure
4a presents the distributions of the productivity values for all trips considered.

We only considered trips in which the waiting time for a subsequent trip was less than one
hour. This assumption was necessary in order to exclude the cases where the driver took a
break or stopped working for the day. Since during the time of data collection RideAustin did
not have a major competing company, we do not have problems with long inter-trip times due
to app switching. Figures 4b and 4c shows the distribution of the idle time in between trips
after preprocessing and its distribution across TAZs.
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3.3 Construction of the Spatio-Temporal Graph

The TAZs of Austin, shown in Figure 1, provide the advantage of using a size that vary ac-
cordingly to the traffic intensity, which is also correlated to the number of trips present in the
dataset. We thus have a high resolution near downtown and a low resolution in more rural
areas. A total of 1, 333 TAZs were considered, requiring that at least one trip originated or
ended in that location. Time was discretized hourly, with a periodicity of one week, for a total
of 168 = 24× 7 time periods.

Altogether, we considered 223, 944 = 168×1, 333 units of observation, which we used as the
vertices of an undirected spatiotemporal graph. Figures 4d and 4e shows the total counts of trips
aggregating marginally for each time unit and each space unit. When considered marginally,
all space units and all time units have some data. However, once we split by both space and
time, only 102,600 of the 223,944 nodes (45.8%) have some data.

We construct a set of edges E as the union of a disjoint set of spatial and temporal edges
E = ES ∪ ET . The set ES of edges in the spatial direction was constructed geographically,
drawing an edge for all geographically adjacent TAZs for spatial a slice at every time. We
excluded a few TAZs that were disconnected to the largest connected component of the graph.
Edges in the temporal direction ET were built for every time slice, i.e., joining the vertices for
the same TAZ in subsequent hours. An extra edge (s, 168) between (s, 1) was added for every
TAZ s to account for the weekly periodicity.

3.4 Model Selection Details

We used a binary tree of 5 levels, yielding 32 bins. To choose this bins smartly, we used
quantiles of the global productivity distribution to define splitting points in the range (0, 125)
which contains 99.98% of the data6. The resulting cutting points are shown in Figure 4a.
While this choice has the undesirable consequence of making our model choice data-dependent,
it brings two great benefits:

• It naturally uses resolution in regions that had more observations, alleviating the effects
of discretization and decreasing the need for deeper binary trees.

• It generates better balanced splits unless the local distribution of a vertex dramatically
differs from the global distribution. The quantity of observations left, and right of each
split is more similar, which significantly improved the inference process since logistic
regression does not perform well in highly unbalanced data scenarios.

We used the Bayesian Optimization procedure that we described in Section 2.5 and Appendix
B. For the Gaussian process, we use the radial kernel Kij = exp(−a‖λi − λj‖22) with a = 0.5
and with a small value of σ = 10−8 for the observation uncertainty.

To exploit parallelism, we proceed in generations; in each step, we use the current estimate
of the predictive distribution to generate a sample of hyperparameters with small expected loss.
We then estimate the cross-validated loss for each one of them in parallel. After that, we update
the Gaussian Process and sample a new generation of candidates. In our case, ten generations
of size 16 worked well.

6After examining the data, there are reasons to believe that the top 0.02% observations come from failures in
the data recording system.
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(a) Histogram of productivity considering all trips. Vertical dashed lines are
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Figure 4: Description of the estimated productivity metrics

3.5 Results

3.5.1 Overview of the inference results

Figure 5 shows the estimated densities. We include five locations that have distinct characteris-
tics that highlight different aspects of the inference. Table 1 shows a summary description of the
selected sites. We choose central areas with high and low demand (university, downtown, Red
River & 12th), two suburbs with different trip count (Domain and Pflugerville), and the airport
area. We show the estimates in intervals of 12 hours from 3 AM to 3 PM. Several interesting
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Table 1: Locations used in Figure 5 for comparison of density estimates

Location Description

Airport Austin-Bergstrom International Airport. It is a single TAZ
with more trips.

The Domain Office, retail, and residential center outside central Austin.
It has a medium-low density of trips.

Pflugerville Large suburban area located far from the central area. It
has a low count of trips.

University The University of Texas at Austin main campus. It is lo-
cated adjacent to the central business district. It has a high
number of trips.

Downtown Central business district. It comprises several small TAZs
with a large number of trip counts. An arbitrary TAZ was
selected in the intersection of 6th & Guadalupe St.

Red River & 12th Red River is a popular street with restaurants and bars near
the central area. However, the exact TAZ that contains the
intersection with 12th has a low trip count.

qualitative remarks are readily available:

• Not all days are equal, when considering whether we should include a time observation for
each time of the week or just each day, we suspected that each day had slightly different
dynamics. We see that in a typical Wednesday at 8 AM, most locations have a density close
to the global mean, whereas, in a typical weekend morning, the locations in the central
area (University, downtown, Red River & 12th) have higher productivity. Mondays and
Fridays also have higher productivity than the rest of the business days.

• Smoothing is turned on with a few exceptions, the estimates of the locations we chose in
central Austin (university, downtown, and Red River & 12th). This finding is particularly
remarkable since Red River had almost no observations. It is also evident that regions
without observations are not pull towards the global mean, since the region behaves very
differently from it.

• We recover periodic patterns. In our analysis, we chose not to create edges between
different days of the week at the same time of the day (e.g., there is no direct edge between
a Monday 8 PM and Tuesday 8 PM). Nevertheless, we do observe periodic patterns for
some locations, notably, the airport. Every morning around 8 PM, its distribution is close
to the global mean. However, every afternoon it is shifted downwards.

To further evaluate the time smoothness of the estimates, we show in Figure 6 the results
at the airport area in intervals of two hours. This completes the picture of the periodic pattern
found in Figure 5, since it shows a smooth transition between mornings, when the distribution
of productivity is closer to the global mean, to afternoons, when it is smaller. It is interesting
to mention that while other locations showed a very different distribution during weekends and
business days, the airport is more similar every day.

3.5.2 Investigating driver productivity

We present a list of interesting scientific inquiries that can be answered using the full distribu-
tions of productivity at each location and time.

18



n: 60

n: 687

n: 47

n: 585

n: 19

n: 341

n: 27

n: 358

n: 39

n: 433

n: 28

n: 492

n: 30

n: 289

n: 60

n: 67

n: 5

n: 38

n: 1

n: 20

n: 0

n: 39

n: 5

n: 31

n: 6

n: 61

n: 41

n: 58

n: 3

n: 1

n: 0

n: 3

n: 0

n: 1

n: 0

n: 0

n: 0

n: 1

n: 0

n: 3

n: 0

n: 0

n: 127

n: 51

n: 8

n: 34

n: 8

n: 25

n: 16

n: 35

n: 11

n: 45

n: 61

n: 59

n: 100

n: 73

n: 14

n: 82

n: 2

n: 12

n: 1

n: 3

n: 0

n: 6

n: 1

n: 15

n: 3

n: 32

n: 14

n: 125

n: 1

n: 0

n: 0

n: 0

n: 0

n: 0

n: 0

n: 0

n: 0

n: 1

n: 0

n: 0

n: 0

n: 0

(A) Airport (B) The Domain (C) Pflugerville (D) University (E) Downtown (F) Red & 12th

Sun 03:00

Sun 15:00

Mon 03:00

Mon 15:00

Tue 03:00

Tue 15:00

Wed 03:00

Wed 15:00

Thu 03:00

Thu 15:00

Fri 03:00

Fri 15:00

Sat 03:00

Sat 15:00

0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

0.00
0.02
0.04

Productivity ($/hour)

D
en

si
ty

Figure 5: Driver Productivity by Time and Location. The global distribution is shown in
dashes; the number of observed data points in the corresponding node of the graph is shown in
the upright corner of each density plot (n). Time is shown every 12 hours.

1. Tail probabilities: what is the probability of not exceeding a specific salary? We compare
to standardized living wages in Travis County, TX (Nadeau, 2017).

2. Quantiles: how many dollars per hour constitute the α-level quantile? We are interested
in assessing the risk of the α% worst performers.

We provide answers to some of these questions in this section; the others are included in the
supplemental material.

Tail probabilities: the risk of not attaining a living wage. We seek to estimate
the probability that a driver will obtain a minimum living salary. Table 2 shows estimated
living wages for families living in Austin in 2017 (Nadeau, 2017). To these wages, we must
add the activity-specific additional costs such as the fixed fee of $0.99 charged per trip charged
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Figure 6: Driver Productivity of the Airport TAZ. The global distribution (dashed); the number
of arriving flights during the observation period (a); the number of departing flights (d); the
number of observations in the dataset (n). Time is shown every two hours for the seven days
of the week.

by RideAustin as well as car maintenance, which on average lies around $6.40 hourly pretax
and $4.78 hourly after tax deductions (Mishel, 2018; Hall and Krueger, 2016). Since a driver
completes more than one trip per hour, we rounded up the costs to $6.00. The final reference
values including costs are also presented in Table 2.

Table 2: Hourly living wages in Austin, TX (Nadeau, 2017). The costs are calculated using
the $0.99 RideAustin fee per ride and an estimation of $4.78 hourly maintenance cost after tax
deductions (Mishel, 2018).

# adults 1 adult 2 adults 2 adults (1 working) 1 adult
# children 0 children 2 children 2 children 2 children
living wage $12.56 $15.64 $26.73 $28.74
living wage+costs $18.56 $21.64 $32.73 $34.74

Figure 7 shows the results for the case of two working adults with two children ($21.64)
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(a) Sunday 3 AM (b) Monday 1 PM

(c) Friday 4 PM (d) Saturday 6 PM

Figure 7: Probability of exceeding $21.64 in the next hour given a current location (living wage
with costs for two working adults with two children).

for different times of the week and regions of the city. The remaining cases are included in
Appendix D. We observe that during a Sunday morning when the traffic is low and there is a
high demand (c.f. Figure 4d) the probability of exceeding the living wage is close to 90% near
downtown, and it decreases to around 70% as a driver lies farther away from central Austin. In
contrast, during Monday 6 PM, with moderate demand but high traffic, the probability ranges
from 40% to 60%, being worst at the airport. These results suggest that drivers are at a high
risk of not making a living wage.

Quantiles: How bad are the worst performers doing? As a company seeking to
guarantee the well-being of its workers, it makes sense to target the population at specific levels
of risk. One may ask, what is the expected income of the lowest 100α% percent? That is, for
each location and time, we seek to find the quantity

qα := min
q∈[0,125]

P (productivity > q) > α

Usual interesting values for α are {0.1, 0.25, 0.5, 0.75, 0.9}. The case α = 0.1 is shown in Figure
8, the rest are included in the Appendix. We can see that in a typical Monday 6 PM, the rush
hour, the lowest 10% quantile is around $12 to $15, being as low as $10 in the airport area. This
result should be contrasted with Table 2, which states that a living wage of a single working
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(a) Sunday 3 AM (b) Monday 1 PM

(c) Friday 4 PM (d) Saturday 6 PM

Figure 8: Lower 10% quantile of productivity for different times and locations.

adult with no children is above $18. The highest value is attained around the central part of
the city during weekend mornings when there are low traffic and high demand (c.f. Figure 4d).

Given that we have quantiles, a natural measure of spread to consider is the inter-quartile
range

IQR = q0.75 − q0.25.

This quantity is preferred over standard deviation for skewed distributions, such as our measure
of productivity. Figure 9 shows the IQR for different times and locations. It must be pointed
out that this is a measure of spread and does not take into account the uncertainty arising
from the estimation procedure, but only the variability in the estimated densities. This figure
complements our previous inquiry using tail probabilities and quantiles in the sense that it
shows that the highest reward observed Sunday 3 AM when there are high demand and low
traffic, comes accompanied by higher variability, and not only a shift in location.

4 Conclusions

In this study, we presented a methodology for estimating the probability distribution of the
productivity of a ride-sourcing driver as a function of space and time. We used information
from more than 1.4 million trips in Austin, Texas, to provide a case study for the application of
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(a) Sunday 3 AM (b) Monday 1 PM

(c) Friday 4 PM (d) Saturday 6 PM

Figure 9: IQR of productivity for different times and locations.

the proposed methodology. To the best of our knowledge, this article is the first academic study
presenting a large-scale empirical analysis of spatiotemporal effects in the productivity of drivers
of TNCs. Previous studies were either of theoretical nature, focused on mean spatial effects only
and not spatiotemporal densities, or were applied to Taxi data and therefore not specifically
tailored to TNC data. Our proposed methodology specifically focused on a spatio-temporal
extension of the spatial density smoothing technique of Tansey et al. (2017), which is based on
the Graph-fused Lasso (GFL). To do so, we focused on addressing two important challenges:
first, enabling interpolation in regions with missing data; second, allowing for different effects
in the spatial and temporal dimensions. Our proposed methodology is based on the Graph-
fused Elastic Net (GFEN), which has an additional `2-total variation penalty for enabling
interpolation. Furthermore, it has separate penalty parameters for the spatial and temporal
dimensions that allow addressing both challenges while preserving many of the benefits of the
GFL in terms of the behavior of the smoothing. We also presented an extended algorithm that
allows training the GFEN at large scale.

The analysis suggests that the method offers several advantages for spatiotemporal evalu-
ations. For example, its ability to interpolate enabled us to provide hourly estimates, even in
locations and times with no observations. A model with high temporal resolution could help
to detect periodic events, such as arrivals’ peaks at the airport. Also, it can be used to detect
the locations and periods with the lowest (or highest) productivity values. In addition, hav-
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ing full density estimates enabled useful insights that could not be possible using mean effects
only. For example, the estimation of the probability of not exceeding a specific salary (e.g., a
living wage), and a value-at-risk calculation which answers the question of what is the salary
threshold defining the worst performer drivers specified by a percentile. This methodology can
help transportation engineers, policy-makers, and other ride-sourcing stakeholders to address
the multiple challenges that trip-level information presents. The method can also be extended
to other ride-sourcing metrics such as idle or deadheading time, driver reaching time, among
others. Furthermore, the methodology can be extended to analyze metrics from different modes,
such as public transit and taxis services.

A direction for future research is to include covariates in the analysis in order to obtain con-
ditional density estimates. For example, it would be useful in our analysis to include weather
conditions such as rain as a covariate. This extension can be easily implemented by replacing
the binomial model in (2) with a logistic regression model or any binary prediction model.
The drawback of this approach is that with the obvious strategy of smoothing each parame-
ter separately, the complexity of the smoothing problem would increase proportionally to the
complexity of the conditional estimation model. Therefore, an interesting area of research is to
find an efficient smoothing framework for this task. Another limitation of our proposed model
is that the addition of the GMRF penalty makes it more sensible to outliers. An interesting
venue of research would be to replace the GMRF penalty with a Huber type of loss, which
would encourage smoothness but would be robust to big outliers. To do this in a way that is
compatible with the current algorithmic strategy for scalability, we would require a fast solver
for the one-dimensional fused Huber problem. To the best of our knowledge, no such method
exists.
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A Algorithmic details of the GFEN

For ease of presentation, in this section we will focus on the case of a general graph, which
corresponds to the GFEN objective (9). The extension to the spatio-temporal case will be
straightforward. In this case, it will be convenient to assume that T itself can be written as a
disjoint union T = TS ∪TT where the trails of TS and TT consists of spatial and temporal edges
respectively. This assumption is not strictly necessary; however, it simplifies computation since
the total variation penalization hyperparameters will always be constant for a given trail.

The first step is to rewrite the GFEN objective as a constrained optimization problem using

a set of slack variables zτ,p = (z
(v)
τ,p)v∈τ exactly one for each trail7 τ ∈ T and for each norm

p ∈ {1, 2}, obtaining

minimize
β

∑
v∈V

l(y(v), β(v)) +
∑
τ∈T

∑
p∈{1,2}

λpTVp(zτ,p, τ)

subject to zτ,p = β[τ ] for all τ ∈ T , p ∈ {1, 2}
(12)

where β[τ ] = (β(v))v∈τ . A direct application of the ADMM algorithm (Boyd et al., 2011) yields
the following iterative updates:

β
(v)
[k+1] = argmin

β
l(y(v), β) + α

∑
{τ : v∈τ}

∑
p∈{1,2}

(β − z(v)τ,p,[k] + u
(v)
τ,p,[k])

2 ∀v ∈ V

zτ,1,[k+1] = argmin
z

‖z− β[k+1][τ ]− uτ,1,[k]‖2 + λ1TV1(z, τ) ∀τ ∈ T

zτ,1,[k+1] = argmin
z

‖z− β[k+1][τ ]− uτ,2,[k]‖2 + λ2TV2(z, τ) ∀τ ∈ T

ut,p,[k+1] = ut,p,[k] + β[k+1][τ ]− zt,p,[k+1] ∀p ∈ {1, 2} ∀τ ∈ T

(13)

where α is the scalar of the ADMM step-size parameter, and ut,p are the ADMM dual variables.
The algorithm depends on a random initialization of the parameters. Step 1 corresponds to a
binomial negative log-likelihood model with a quadratic regularization. Following Tansey et al.
(2017), we can substitute the full minimization in Step 1 with a single iteration of Newton’s
method. Step 2 corresponds to the fused lasso problem for chain graphs. We leverage available
linear-time solvers such as (Johnson, 2013) and (Barbero and Sra, 2018), which have comparative
performance. We prefer the latter since it can handle different values of λ1 for each edge,
although in the current formulation it is assumed to be constant. Step 3 can be solved in linear
time using the Kalman smoothing algorithm (Welch et al., 1995, see). Finally, step 4 is the dual
variable update of the ADMM algorithm in scaled form and does not require any sophisticated
computation. There are different strategies to dynamically change the value α to accelerate
convergence; empirically, we found that the method of Wohlberg (2017) worked best for our
problem.

In Section 2.3, we argued that the smoothing step could be performed in an embarrass-
ingly parallel for every node of the tree. The algorithm above offers additional possibilities for
parallelism since steps 2-4 can be performed in parallel for each trail. In a high-performance
computing environment, a useful strategy would be to distribute the smoothing problem for
each tree node into different computation nodes using distributed memory parallelism. While
steps 2-4 can be parallelized for each trail using multi-threading, i.e., shared-memory paral-
lelism. Multi-threading will work better if the trail decomposition used has trails of balanced
lengths; see (Tansey and Scott, 2015) for a discussion on trail decomposition strategies.

7With a slight abuse of notation, we say that v ∈ τ if v appears in some edge of τ .
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B Hyperparameter Tuning with Bayesian Optimization

Hyperparameter tuning can be performed using in-sample and out-of-sample criteria. In-sample
tuning for the graph-fused lasso is typically done using information criteria such as the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) (Tibshirani et al., 2005).
These methods rely on the fact the degrees of freedom are easy to compute in the graph-fused
lasso since it reduces to counting the number of plateaus (Tansey and Scott, 2015). However,
in the case of the GFEN, the `2-norm penalty adds smoothness and makes the approach of
counting plateaus unfeasible. One solution that appears in the GMRF literature is to use an
approximate information criterion such as the Deviance Information Criterion (DIC). However,
that solution is known to favor over-fitted models and assumes an approximately normal dis-
tribution predictive distribution (Ando, 2011). Below we describe an alternative out-of-sample
tuning approach based cross-validation, for a survey see Arlot et al. (2010).

The overall idea is that we can use k-cross-validation for the out-of-sample likelihood predic-
tion. Given a set of hyperparameters λ for the model. We divide our data y into k equally sized

testing sets or folds {y{j}}kj=1. For each fold j, we use the training data y
{j}
train =

⋃
j′ 6=j y{j

′} to
learn the parameters of a statistical model. We then use thos parameters compute the average
of the out-of-sample negative likelihood, i.e. the out-of-sample loss, using the evaluation set

y
{j}
test = y{j}. Finally, the estimate out-of-sample loss corresponding to θ is the average over all

test sets y
{j}
test. To compute the out-of-sample loss in the context of our graph density smoothing

model we would to the following: for each point yi ∈ y
{j}
test, we would identify the corresponding

leaf node B(yi) to which yi belongs and compute − log P̂ (yi ∈ B(yi) | β̂{j}) using expression (2)
and the relevant parameters for the vertex to which yi belongs. Averaging over the losses of all
the out-of-sample points for every fold we obtain the cross-validation estimate for the negative
loglikelihood

l̂λ :=
1

N

k∑
j=1

∑
yi∈y

{j}
test

− log P̂ (yi ∈ B(yi) | β̂{j}) (14)

where N is the total number of data points, and λ is the vector of total variation penalization
parameters. The hyperparameters with the lowest values of l̂λ will be preferred.

Since for a spatio-temporal GFEN, we have to tune for four hyperparameters a grid-search
strategy is not recommended. For example, if we were to try 10 different values for each
hyperparameter we would then need to train k × 104 = 40, 000 models to select the best
hyperparameters using grid-search! Instead, we use a Gaussian Process (Snoek et al., 2012) to
guide the search. The assumptions of this approach are the following:

1. Suppose we have observed out-of-sample losses l̂1, . . . , l̂n corresponding to hyperparame-
ters λ1, . . . , λn. The Gaussian Process assumption is that l̂1, . . . , l̂n follow a multivariate
Gaussian distribution.

2. Moreover, the multivariate distribution is assumed to have the following form

(l̂1, ..., l̂n) ∼ Normal(0,K + σ2I),

where K := (Kij)
n
i,j=1 is some Kernel matrix depending on λ1, . . . , λn and σ2 models the

uncertainty in the observations l̂j . A typical example of kernel matrix K is the radial
kernel Kij = exp(−a‖λi−λj‖22) where a controls the degree of correlation between similar
hyperparameters.

3. Given a new point l∗ corresponding to an untested hyperparameter λ∗, the fact that
(l∗, l̂1, . . . , l̂n) is multivariate Gaussian can be used to easily compute the predictive mean
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value of l∗ given the observed l̂1, . . . , l̂n. More precisely, given a series of candidate untested
hyperparameters, we select the λ∗ that has the lowest expected loss E[l∗ | l̂1, . . . , l̂n].

The above steps give a high-level description of the idea of Bayesian optimization. For a detailed
explanation, we refer the reader to the review by Shahriari et al. (2016). In Section 3 we will
provide additional details about our implementation for the RideAustin dataset.

C Choosing a Tree Splitting Scheme

The estimated densities using a binary tree B(K) will assign a constant density to every point
of a leaf node Bγ . Therefore, the quality, or more precisely, the resolution, will be limited by
the choice of tree. Under infinite streams of data, the depth of the tree K can be increased
until the leaf nodes Bγ are very small. However, with finite data, a bad partitioning scheme
might lead to a poor resolution in regions of high data concentration and too much resolution
on regions without likely values. To improve the construction, we suggest using a quantile
method based on the global empirical distribution formed by aggregating the data from all the
vertices. This is illustrated in Figure 4a, where we create quantile for the global distribution of
the productivity variable in the RideAustin dataset. We will provide the details of the definition
of the productivity variable in Section 3. For example, with a depth K = 2, the first splitting
value would be the median, and then the bottom half would be split with the first quartile,
and the top half would be split with the third quartile. More generally, for γ ∈ {0, 1}k, we can
define Bγ = [qa, qb) where qa and qb are global distribution quantiles corresponding respectively

to a =
∑k

j=1 γj2
−j and b = a + 2−k. This approach to splitting the output space using a

balanced binary tree is commonly applied in the literature of kd-trees, as in Bentley (1975),
and Brown (2015).
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D Tail probabilities of not exceeding living wage

(a) Sunday 12am (weekend midnight) (b) Monday 1pm (weekday midday)

(c) Friday 4pm (afternoon) (d) Saturday 6pm (weekend night beginning)

Figure D.1: Probability of exceeding $18.56 in the next hour given a current location (living
wage with costs for one single working adult with no children).
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(a) Sunday 12am (weekend midnight) (b) Monday 1pm (weekday midday)

(c) Friday 4pm (afternoon) (d) Saturday 6pm (weekend night beginning)

Figure D.2: Probability of exceeding $32.73 in the next hour given a current location (living
wage with costs for two adults, one working, and two children).
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(a) Sunday 12am (weekend midnight) (b) Monday 1pm (weekday midday)

(c) Friday 4pm (afternoon) (d) Saturday 6pm (weekend night beginning)

Figure D.3: Probability of exceeding $34.74 in the next hour given a current location (living
wage with costs for one adult with two children).

34



E Quantiles

(a) Sunday 12am (weekend midnight) (b) Monday 1pm (weekday midday)

(c) Friday 4pm (afternoon) (d) Saturday 6pm (weekend night beginning)

Figure E.1: Lower 25% quantile of productivity for different times and locations.
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(a) Sunday 12am (weekend midnight) (b) Monday 1pm (weekday midday)

(c) Friday 4pm (afternoon) (d) Saturday 6pm (weekend night beginning)

Figure E.2: Median of productivity for different times and locations.
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