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ABSTRACT27
Micromobility services presented an exponential growth in recent years due to the introduction of1
shared electric dockless scooter (e-scooters) services in cities across the United States. E-scooters2
offer an alternative for short trips and are particularly suitable for solving the first-mile- last-mile3
transit access and egress problem. However, this emerging transportation technology has brought4
multiple challenges to urban areas, including the lack of infrastructure, deficient operating rules5
and regulations, and safety concerns. There is a lack of research on their impact on the urban6
environment. The main challenge remains in the availability of data. The principal objective of7
this research is to analyze e-scooter trips and interactions with transit in an urban/university envi-8
ronment. We make use of publicly available datasets to describe trip patterns in a six-month term9
in the City of Austin. We aggregate the information by traffic analysis zones and evaluate the key10
variables influencing e-scooters trip origins and destinations using a spatial error model (SEM) to11
account for spatial autocorrelation. Additionally, we use a campus-wide survey to evaluate uni-12
versity e-scooter usage and to explore population characteristics, mode shift, mode interaction,13
and opinions toward new e-scooter policies and regulations implemented in the university. Princi-14
pal findings suggest that there is no enough evidence of interaction between e-scooter and transit15
trips. In the university environment, the mode interaction is not significant, and instead, there is a16
presence of mode shift between e-scooters and transit.17

18
Keywords: Shared electric dockless scooters, micromobility, transit, campus transportation, spatial19
regression.20
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INTRODUCTION21
Micromobility, known as small, transportation solutions such as bikes, scooters, and mopeds, has1
existed for decades (1), more recently, in the form of Segways, docked and dockless bicycles, and2
electric bicycles, unicycles, and skateboards. With the introduction of shared electric dockless3
scooters (referred to as e-scooters), micromobility has experienced exponential growth, with a4
faster rate of adoption than other forms of shared mobility, such as bike share and car share (2).5
E-scooters started as a new shared mobility service in Santa Monica, California during September6
2017, and in less than a year after their introduction, these devices were operating in 65 United7
States (U.S.) cities (3).8

Micromobility services offer alternatives for short trips and are particularly well-suited to9
deliver first-mile-last-mile (FMLM)1 solutions for public transportation. However, its impact on10
transit usage is not well understood. Micromobility can lead to an increase in bus ridership if it is11
functioning as a supplement to the transit system serving FMLM trips. But, it can also be used as a12
substitute for short transit trips, or can even generate trips due to recreational activities. The main13
research in the area is focused on the analysis of docked and dockless bikeshare programs and14
its modal integration (4–6) and modal substitution (7–9). There is a lack of studies that provide15
evaluations of the implications of e-scooters on public transportation, and current providers are16
working toward the integration of these devices to the transit system (10).17

The adoption of emerging transportation technologies, such as e-scooters and ride-sourcing,18
continues to grow due to factors like the proliferation of smartphone-based mobility services, in-19
crements in traffic congestion in urban areas, and the amount of private financing available for20
transportation services (2). New transportation paradigms have brought multiple challenges to ur-21
ban areas, including the lack of infrastructure (11, 12), deficient operating rules and regulations22
(13–15), and arbitrary pricing schemes (16). However, research studies on the impact of these23
services on urban environments are limited, and the main challenge remains in the availability of24
publicly available data to provide empirical evaluations.25

The principal objective of this research is to analyze e-scooter trips and interactions with26
transit in an urban/university environment. We make use of publicly available datasets to describe27
trip patterns for six months in the City of Austin. We use information from more than 1.7 million28
e-scooter trips and more than 9 million bus trips to model e-scooter trips. We implement a spatial29
error model (SEM) to evaluate the principal variables influencing trip origins and destinations, and30
to account for spatial autocorrelation. Also, we make use of a survey with approximately 60031
respondents to evaluate university e-scooter usage. We explore population characteristics, mode32
shift, mode interaction, and opinions towards new e-scooter policies and regulations implemented33
in the university. The contributions of this work include (i) description of e-scooter and transit trip34
patters in the City of Austin, (ii) analysis of the key variables influencing e-scooter trip origins and35
destinations, and (iii) evaluation of e-scooter usage in a university environment.36

Our main findings suggest that there is evidence of interaction between e-scooters and37
transit trips. However, in the university environment, the mode interaction is not significant, and38
instead, there is a presence of mode shift between e-scooters and transit.39

Subsequent sections of the paper are organized as follows: the data description section de-40
scribes the datasets used, data cleaning and processing, and description of scooter and transit trips;41

1The first-mile-last-mile problem refers to the problem which public transportation users face when the distance to
access or egress transit stations are higher than their comfortable walking distance, which is typically 400 meters.



Zuniga-Garcia and Machemehl 2

the methodology presents a description of the survey administration and the spatial model specifi-42
cations; the results’ section presents and discusses the main findings; the last section summarizes1
the principal conclusion of this research effort.2

DATA DESCRIPTION3
This research effort encompasses the use of several different publicly-available data sources. In4
this section, we describe the datasets, data processing, and cleaning, and we provide a general5
description of the information obtained.6

Scooter and Transit Data7
The City of Austin’s operating rules for dockless mobility services requires that licensed companies8
provide access to their fleet information and anonymized data for each trip (17). The City of Austin9
Transportation Department offers open access to this information for public use and analysis. The10
dataset contains dockless scooter and bicycle trips and includes variables that describe the trips,11
such as duration, distance, and location. The location of the origin and destination of the trips12
is given through the longitude and latitude coordinates2, truncated to the third decimal degree, a13
corresponding precision of 111.32 meters.14

For this study, we selected trips made between July 1st and December 31st, 2018, corre-15
sponding to a period with approximate constant scooter demand. During this period, there were16
a total of 2,118,133 dockless vehicles trips, with 2,044,007 (96.5 percent) scooter trips. This data17
was processed and cleaned, removing trips with zero and extreme distance or duration values. Cur-18
rent scooter operators are required to provide the service only in designated areas of the city. Thus,19
we selected a study area that accounts for 97.7 percent of the scooter trips. The total study area20
corresponds to the zone delimited by Texas State Highway Loop 1 (West), U.S. Route 183 (East21
and North), and U.S. Highway 290/TX Highway 71 (South). Figure 1 describes the location of the22
study area (shaded) and the University of Texas at Austin (UT Austin) campus (drop pin), located23
in the central area of the City of Austin. The map shows spatial units of Traffic Analysis Zones24
(TAZs)3 as defined by The Capital Area Metropolitan Planning Organization (CAMPO), which is25
the selected unit of analysis for the spatial modeling method. After the cleaning process and using26
only trips within the study area, the final scooter dataset contains 1,714,389 trips, and the total TAZ27
units located within the study area are 399.28

The transit information is obtained using open-data provided by Austin’s transit agency,29
Capital Metropolitan Transportation Authority (CapMetro). Transit ridership is obtained using30
the Automatic Passenger Counts (APC)4 dataset, that provides transit vehicle information such as31
boarding and alighting counts, arrival and departure times, vehicle location (latitude and longitude32
coordinates), among others. This data is combined with stop locations, obtained from the General33
Transit Feed Specification (GTFS) data. We matched the vehicle location from APC with the stop34
location identification number from GTFS. The processing and cleaning stage included removal of35
double counts per stops, counts located more than 50 meters away from the corresponding stop,36
and extreme values of boarding and alighting counts.37

2On April 12th, 2019, the City of Austin restricted the location information as a measure to protect users’ privacy.
Therefore, the currently available location information is aggregated at Census Tract level.

3TAZs are geographic areas dividing a planning region into relatively similar areas of land use and land activity.
4The APC is an electronic device, installed on transit vehicles, that captures information of passengers’ boarding

and alighting.
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In addition to ridership, we also estimated transit supply information, such as peak-hour38
bus frequency and stop density summarized at TAZ-level. We selected the same study period,1
between July 1st and December 31st, 2019, and filtered for trips within the defined study area. The2
total transit dataset contains 6,900,898 stop-level transit vehicle trips, corresponding to a total of3
9,033,289 passenger boarding counts and 9,037,738 passenger alighting counts.4

FIGURE 1: Location of study area (shaded) and UT Austin (drop pin)

Other Data Sources5
In addition to e-scooter and transit trip information, we obtained socio-demographic, race and eth-6
nicity, age distribution, and household information to characterize the study area. This information7
is obtained using TAZ-level data obtained from the CAMPO website5 and from the American8
Community Survey (ACS) 2016. The ACS information is aggregated at Block Groups (BG) level;9
therefore, an additional spatial process was required to summarize at TAZ-level. The process con-10
sisted of intersecting TAZ and BG areas to estimate the proportion of BG per TAZ. The TAZ11
summary included the average BG values weighted by BG area and population density within the12
BG.13

Summary of Data14
This section describes the data used in the analyses as well as the spatial aggregation of the infor-15
mation.16

Description of Scooters and Transit Trips17
Figure 2 shows a summary of scooter and transit data, obtained after the cleaning and process-18
ing procedure described in the previous sections. The description is divided into “Total” values,19
corresponding to the total study area, and “UT Austin,” corresponding to UT Austin campus and20
surrounded areas (refer to Figure 1).21

An average of 35 percent of scooter trips and 22 percent of transit boarding counts are22
made within UT Austin and surrounded areas. Figures 2a and b present the daily ridership for23

5The CAMPO website can be accessed at https://www.campotexas.org/

https://www.campotexas.org/
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the six months analyzed for scooters and transit, respectively. The scooter time series shows the24
influence of the Summer semester (July and part of August), corresponding to a high absence of1
students in the area. The university zone presented lower ridership values compared to other dates2
in October and November, where the majority of total scooter ridership corresponded to this area.3
The absence of students also influences the transit values during the Summer semester, and this4
data presents a very marked weekly seasonality. Figure 2c summarizes ridership by month. July5
is the month with lower trip demand, while October presents the highest number of scooter and6
transit trips.7

The average weekday ridership is shown in Figure 2d. As mentioned previously, transit8
ridership presents a marked weekly seasonality. It can be related to the differences in weekday and9
weekend trips, where weekend trips are reduced by approximately 50 percent. In contrast, scooter10
trips seem to increase during the weekend and maintain a constant number of trips per weekday.11
Figures 2e and f present the average hourly ridership for scooters and transit, respectively. During12
weekdays, there are three peaks in the hourly distribution, corresponding to the system-wide AM-13
peak and PM-peak (generally related to commuting trips), and a mid-day peak. During weekends14
the trips start increasing beyond 9 AM, and there is only one peak across the day, where the average15
hourly trip rate is higher than Monday to Friday trips. Transit demand presents a marked AM and16
PM peak during weekdays, and one peak during weekends, where ridership is considerably lower.17
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(a) Daily ridership, scooters (b) Daily ridership, transit

(c) Monthly ridership (d) Average weekday ridership

(e) Hourly ridership, scooters (f) Hourly ridership, transit

FIGURE 2: Scooters and transit data summary

Spatial Aggregation18
In this paper, average daily scooter and transit trips are used for the spatial modeling method. The1
unit of analysis is TAZ; therefore, these variables are summarized at TAZ-level. Since weekday2
trips differ considerably from weekend trips, as discussed in the previous section, we separate the3
analysis between average weekday and average weekend ridership.4
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Table 1 provides descriptive statistics for e-scooter and transit trips, as well as variables that5
describe the study area, corresponding to a total of 399 TAZs. The summary includes minimum1
and maximum values, the sample mean, and the standard deviation. This information is obtained2
from different data sources; for this reason, the corresponding source year is shown within square3
brackets.4

Descriptive statistics of the number of scooter and transit trips show a significant spatial5
heterogeneity. Results of the spatial distribution of scooter and transit trip origins (or boarding)6
are shown in Figure 3 for average weekday and weekend trips. Similar patterns are found for7
destination or alighting trips, so these maps are omitted. Areas with a high number of trips differ8
among weekend and weekdays. Scooter weekday trips show a high concentration near the UT9
Austin area. While for weekends, the Downtown area shows higher average daily trips, specifically10
in locations near recreational areas. Similarly, transit trips are highly concentrated between UT11
Austin and the South-East area corresponding to the Riverside zone, a very dense area.12
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TABLE 1: Descriptive statistics at TAZ-level

Variables Min. Max. Mean Std. Dev.
E-scooter information [2018]
Number of trips origin in a weekday 1.00 894.54 22.75 58.11
Number of trips origin in a weekend 0.00 639.00 27.32 52.48
Number of trips destinations in a weekday 1.00 922.89 22.62 58.54
Number of trips destinations in a weekend 0.00 621.11 27.22 52.05
Transit demand [2018]
Number of boardings in a weekday 0.00 3,332.49 139.21 282.26
Number of boardings in a weekend 0.00 1,239.62 81.85 146.38
Number of alightings in a weekday 0.00 3,106.24 139.54 273.87
Number of alightings in a weekend 0.00 1,500.00 81.37 146.39
Transit supply [2018]
Stop density (stops/km2) 0.00 248.71 15.36 25.13
Bus frequency in weekday peak hour (buses/hour) 0.00 22.60 3.11 2.84
Bus frequency in weekend peak hour (buses/hour) 0.00 14.83 2.47 2.05
Socio-demographic information
Population density (residents/km2) [2016] 0.00 19,390.70 2,352.20 2,202.66
Employment density (employees/km2) [2015] 0.00 161,932.20 8,447.20 19,150.91
Retail employment density (employees/km2) [2015] 0.00 46,442.92 1,429.38 4,000.53
Race or ethnicity [2016]
Proportion of White population 0.00 1.00 0.80 0.11
Proportion of Black/African American population 0.00 0.66 0.06 0.09
Proportion of Asian population 0.00 0.32 0.08 0.05
Proportion of other races 0.00 0.41 0.06 0.08
Age distribution [2016]
Proportion of population aged 17 year and below 0.00 0.50 0.13 0.09
Proportion of population aged 18-34 years 0.00 1.00 0.41 0.16
Proportion of population aged 35-64 years 0.00 0.61 0.37 0.11
Proportion of population aged 65 years and above 0.00 0.32 0.08 0.05
Household information [2015]
Average household size 0.00 4.06 1.86 0.93
Median household income (USD) 0.00 165,770.00 41,290.00 28,068.03

The transit supply varies across the study area, with stop density from zero to 15.36 stops13
per squared-kilometer, approximately. The average transit frequency for weekdays is 3.11 and for1
weekends is 2.47 buses per hour. The socio-economic variables indicate that the area contains a2
high fraction of White population and a majority within the 18 and 64 years age range. The average3
household income is USD 41,290, and average household size is 1.86 persons.4
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(a) Average weekday trips, scooters (b) Average weekend trips, scooters

(c) Average weekday boardings, transit (d) Average weekend boardings, transit

FIGURE 3: Average daily trips by TAZ

METHODOLOGY5
This section presents the spatial regression model and describes the methodology used for the1
university survey.2

Spatial Autocorrelation3
In this study, scooter trips are modeled to evaluate the key variables influencing trip origins and4
destinations. Due to the spatial characteristic of the data, an ordinary least squares (OLS) model is5
not appropriate. First models estimated using OLS were tested for spatial autocorrelation, and the6
results showed spatial dependence. We used Moran’s I (Equation 1)6 test, the most commonly used7
spatial variability test, to evaluate the models’ residuals. Moran’s I statistics values are between -18
and 1. Positive values indicate spatial aggregation. Negative values indicate spatial dispersion, and9
a value near zero refers to a spatially random distribution. The null hypothesis of the test is that the10

6The neighbors are defined using queen contiguity weights.
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model residuals are spatially independent. It uses a Z-score, shown in Equation 2, as an indicator11
of the significance of the Moran’s I statistic to verify the null hypothesis.1

I =
n

∑
n
i=1 ∑

n
j=1 wi j

∑
n
i=1 ∑

n
j=1 wi j(εi − ε̄)(ε j − ε̄)

∑
n
i=1(εi − ε̄)2 (1)

2

Where, n is the number of spatial units; wi j is the weight between location i and j; εi and3
ε j are the OLS residuals at locations i and j, respectively; and ε̄ is the average of all residuals.4

Z(I) =
I −E(I)√

Var(I)
(2)

5

Where, E(I) and Var(I) are the expectation and the standard deviation of the Moran’s I6
statistic, respectively.7

Spatial Error Model8
The spatial effects are incorporated using a spatial error model (SEM). SEM is useful when there9
is spatial autocorrelation among residuals (18). The SEM model can be expressed as follows:10

y = Xβ + ε (3)
Where, y is the dependent variable; X is the matrix of explanatory variables; and ε is the11

error, specified as follows:12

ε = λWε +µ (4)
Where, λ is the autoregressive parameter and µ is a random error term, assumed normal13

(see Equation 5). If λ is statistically significant, it indicates the existence of variables with spatial14
autocorrelation.15

µ ∼ N(0,σ2In) (5)

University Survey16
In addition to the e-scooter model, we surveyed a university environment using UT Austin as a17
case study. This location contains nearly 35 percent of scooter trips and 22 percent of transit trips18
in the selected study area. During the Fall semester, 2018, UT Austin had an approximate total19
of 55,000 students and faculty, with 40,804 undergraduate students, 11,028 graduate students, and20
3,133 faculty (19). The office of Parking and Transportation Services (PTS) and other adminis-21
trative offices at UT Austin helped in sending the survey to students using email addresses during22
May 2019. The survey sample is not completely random, and the rate of response was not con-23
trolled. However, more than 500 students responded, representing nearly one percent of the student24
population, which is highly representative.25

The survey was designed and administrated using Qualtrics, and it contains questions re-26
garding trip information, where respondents were asked if they used an e-scooter to commute to,27
from, or within the university campus. The survey questions include the description of the most28
recent e-scooter trip (such as duration and trip purpose), demographic information, and opinions29
regarding the implementation of new e-scooter regulations within the campus. The campus rules30
and guidelines for scooter operation require e-scooter users to operate them only in areas where bi-31
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cycle traffic is allowed. Scooters can be parked only at bike racks or in designated scooter parking32
spaces/areas, as shown in Figure 4. Also, the maximum e-scooter speed limit is eight mph, which1
is controlled electronically once the device enters the campus area. Failure to follow university2
regulations result in impound fees to the provider who transfers this cost to the corresponding user3
(20).4

FIGURE 4: Designated e-scooter parking locations

RESULTS AND DISCUSSION5
This section presents the main results and a discussion of the main findings. First, we present the6
results from the model estimation. Second, we analyze the survey outcomes.7

Model Estimation8
A total of four models are estimated independently and correspond to the average daily scooter9
trip origins during weekdays and weekends, and average daily scooter trip destinations during10
weekdays and weekends, summarized by TAZ areas. The SEM models were estimated using R11
software. Variables shown in Table 1 were considered, and different functional forms were tested12
during the analysis based on previous research findings. The final model specification and its esti-13
mated values are presented in Table 2. It includes the corresponding p-value, model characteristics,14
such as the log-likelihood, Akaike information criterion (AIC), and the results of the Moran’s I test15
for the model residuals.16

Results for the model estimation indicate that the number of transit boardings and alightings17
has an impact on scooter destinations and origins, respectively. The estimated coefficients for these18
variables have a low magnitude (ranging from 0.03 to 0.11), and they are statistically significant19
for all the models. Although significant, this result also can be related to other trends in transit20
ridership not captured in the model and study design. This limitation is also highlighted by different21
authors with similar modal-integration results such as Ma et al. (21), and Campbell and Brakewood22
(7).23

The transit supply coefficients, stop density and bus frequency, are negative and statistically24
significant for the weekday models only. These results suggest that areas with a low number of25
stops and bus frequency tend to have many scooter trips, and as the transit service improves, e-26
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scooter demand decreases. In terms of FMLM, increments in stop density values are related to27
lower transit access/egress distances. Thus, it is expected that e-scooters do not interact with1
buses, since walking trips are within users’ tolerance. Similar results from a bikeshare program in2
Washington D.C. found that shifts towards transit (bus and rail) usage were more significant for3
those living in the urban periphery than for those in the urban core (8).4

Among the demographic variables included in the model, population density has a signifi-5
cant influence on scooter trips, as expected. While employment density only has effects on week-6
day models, suggesting that weekday trips are likely linked with work-related activities. However,7
retail employment is not significant for any of the models.8

Results suggest that variables for racial/ethnic background and age did not capture any9
effect. Similarly, household income was not significant. The variable controlling for the location10
of the university was found positive and significant, suggesting that a high number of trips are11
generated in this area, which is expected based on the high number of trips starting and ending12
there.13

TABLE 2: Estimation results of the spatial error model (SEM)

Variables
Scooter origin Scooter destination

Weekday Weekend Weekday Weekend
Est. (p-val.) Est. (p-val.) Est. (p-val.) Est. (p-val.)

No. of boardings in a weekday 0.09 (0.00)*
No. of boardings in a weekend 0.05 (0.00)*
No. of alightings in a weekday 0.11 (0.00)*
No. of alightings in a weekend 0.04 (0.03)*
Stop density -0.25 (0.00)* -0.07 (0.45) -0.15 (0.07)* -0.06 (0.54)
Bus frequency in weekday -2.69 (0.00)* -2.69 (0.00)*
Bus frequency in weekend -1.77 (0.20) -2.14 (0.12)
Population density (log) 14.05 (0.00)* 11.84 (0.03)* 15.40 (0.00)* 10.93 (0.04)*
Employment density (log) 3.52 (0.02)* 2.38 (0.16) 4.07 (0.01)* 2.47 (0.14)
Retail employment density (log) -0.37 (0.70) 1.42 (0.19) -0.27 (0.79) 1.48 (0.17)
Prop. of White population 24.11 (0.32) 13.97 (0.61) 2.29 (0.34) 16.59 (0.54)
Prop. of pop. aged 18-34 years 12.03 (0.49) 28.19 (0.15) 12.54 (0.47) 25.11 (0.20)
Household income (US$10,000) 0.107 (0.89) 1.06 (0.20) 0.19 (0.80) 1.04 (0.21)
University of Texas at Austin 13.40 (0.00)* 62.70 (0.00)* 15.00 (0.00)* 72.31 (0.00)*
Autoregressive coefficient (λ ) 0.56 (0.00)* 0.57 (0.00)* 0.53 (0.00)* 0.57 (0.00)*
Log-likelihood -2011.84 -2064.09 -2018.24 -2059.50
Akaike inf. criterion (AIC) 4049.70 4154.20 4062.5 4145.00
Moran’s I residuals -0.01 -0.01 0.00 -0.01
Moran’s I std. deviate -0.14 (0.55) -0.22 (0.59) -0.03 (0.513) -0.15 (0.56)
*Note: conditions to reject the null hypothesis with a 90 percent confidence level

The autoregressive coefficient has high magnitude, and it is significant for all the modes,14
reassuring the spatial effects of the variables and the importance of the implementation of a spatial15
model. The Moran’s I indicate that the model residuals are spatially random. Thus, the SEM model16
was able to separate the spatial effect.17
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Survey Responses18
The survey results were retrieved from the Qualtrics platform and analyzed using Microsoft Excel1
tools. A total of 598 responses were collected, where 43 percent (255) are scooter users and 57 per-2
cent (343) are non-users. The description of the survey population, presented in Table 3, provides3
details about respondents’ gender, occupational or student status, racial or ethnic background, and4
age groups.5

The surveyed population showed an equal proportion of male and female respondents. The6
majority of them are students, with a higher percentage of graduate (56 percent) compare to un-7
dergraduate students (27 percent). While faculty, staff, or post-doctoral researchers are only seven8
percent. In terms of racial and ethnic background, the majority are Caucasian or White, followed9
by Asian/Pacific Islander and Hispanic/Latino. These proportions are similar to the profiles of stu-10
dents from Fall semester, 2018 (19). In terms of age groups, the majority of the respondents (8011
percent) are 34 years or younger, as expected for a college area.12

TABLE 3: Description of survey population

Description Total Percentage Description Total Percentage
Gender Occupational or student status
Male 267 45% Undergraduate student 160 27%
Female 262 44% Graduate student 336 56%
Other 5 <1% Faculty, staff, or post-doc 44 7%
No answer 64 11% No answer 58 10%
Racial or ethnic background Age groups
Caucasian/White 326 55% 18-24 year old 222 37%
Asian/Pacific Islander 66 11% 25-34 years old 257 43%
Hispanic/Latino 57 10% 35-44 years old 40 7%
Indian/Pakistani/South Asian 18 3% 45-54 years old 13 2%
Middle-Eastern or Arab 12 2% 55 years or older 6 1%
Black/African America 8 1% No answer 60 10%
Other 32 5% Responses
No answer 79 13% Total 598 100%

The main survey findings are summarized in Figure 5. The e-scooter usage by age (Figure13
5a) shows that users are primarily young, and the usage decreases with age. About 51 percent of14
users between 18 and 24 years old used e-scooters within the UT campus, while only 17 percent of15
respondents 55 years or older used the service. Interestingly, the model developed in the previous16
section did not capture this age effect. Results from usage by race and ethnic background show that17
only 27 percent of Asian/Pacific Islanders used e-scooters, however, 56 percent of Hispanic/Latino18
and Indian/Pakistani/South Asians had used them. From the Caucasian/White population, only19
34 percent have used e-scooters at UT Austin. The model did not show significant results for the20
racial variable included. However, previous research on ride-sourcing systems show that areas with21
a high proportion of White population do not tend to generate high demand for ride-sourcing trips22
(22) and are more prone to travel by car only (23, 24).23
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(a) Use of e-scooters by age
(b) Use of e-scooters by race/ethnicity

(c) E-scooters users by gender and occupation (d) E-scooter trip purpose

(e) Description of the most recent e-scooter trip (f) Opinion on new campus regulations

FIGURE 5: Summary of survey results

In term of e-scooter users, Figure 5c shows gender by occupational status. For students, the24
proportion of male users is 63 percent (undergraduate) and 62 percent (graduate), while for faculty,1
staff, or post-doctoral researchers it is 56 percent. The total sample has a proportion of 62 percent2
male and 38 percent female users. Typically, bicycle programs are known to present a significant3
gender gap (25–27). For the U.S., proportions of males users are found to be as high as three times4
more than females users (2, 27). Recent authors suggest that e-scooters are likely to attract a more5
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diverse group of users, and can potentially achieve a greater gender parity (2, 28, 29). However,6
results from the survey show that the gender gap is still present in this university environment.1
Similarly, Akar et al. (25) studied a university area in Ohio in terms of bicycle choice and gender.2
The authors found that female are more worried about safety and the lack of infrastructure than3
male students, which can help explain the behavior observed for students at UT Austin as well.4

Respondents were asked to describe the trip purpose of their most recent e-scooter trip at5
the university area. Responses are shown in Figure 5d. The majority of trips are work-related, with6
“go to class” and “go to a meeting” purposes covering 61 percent and only 23 percent of trips as7
recreational (“social/entertainment and “go to a restaurant/meal” ). Similar results were found in8
Portland, where only 28.6 percent of users said they most frequently used e-scooters for recreation9
or exercise (28).10

The description of the last e-scooter trip in the university area indicates that 28 percent of11
users make one or more trips per week. Also, 90 percent of the trips last between two and ten12
minutes. The analysis of the e-scooter dataset reveals that, in general, trips made at the university13
are shorter than other trips in the city, as shown in Figure 6. The average trip distance in the total14
study area is 1.4 kilometers, while for the university area is 1.1 kilometers. Similarly, The average15
trips duration is 10.7 minutes, while in the university area is 8.0 minutes.16

(a) Trip distance (average per TAZ) (b) Trip distance distribution

(c) Trip duration (average per TAZ) (d) Trip duration distribution

FIGURE 6: E-scooter trips characteristics
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The respondents were asked about mode interaction and mode replacement in terms of (i)17
modes used to complete the trips in conjunction with e-scooter, and (ii) modes used to complete1
the trip before e-scooters were available, respectively. Results, shown in Figure 5e, suggest that2
the majority of the e-scooter trips (70 percent) are complementary to the walking mode, followed3
by bus (12 percent), and auto (eight percent). While, 47 percent of the e-scooter trips are replacing4
previous walking trips, and 21 percent are replacing previous transit (bus) trips. These results imply5
that e-scooters are not increasing transit trips; instead, fewer trips are made by bus because of the6
introduction of these devices. This finding contradicts the models’ outcome, where the interaction7
between e-scooters and transit was found significant. Based on the trip characteristics, it is likely8
that university users do not find it attractive to use e-scooters as a FMLM mode. The majority of9
the trips are relatively short and located within the campus area.10

The survey included questions regarding new university regulations implemented as a result11
of the popularity of the e-scooters on campus. First, respondents were asked if they were aware12
of all campus rules and guidelines for scooter operation, safety, and parking, and 67 percent of13
the total respondents answered positively. Second, two questions assessed the opinion toward14
safety improvements after (i) enforcing the designated parking spaces, and (ii) implementation15
of a campus speed limit. In general, respondents agreed that these measures improved safety.16
However, there is a different perception between e-scooter users and non-users, as shown in Figure17
5f. Less e-scooter users agreed on safety improvements, compared to non-user opinion. Finally, e-18
scooter users were asked if the implementation of a speed limit reduced the number of trips within19
the university campus. A total of 38 percent of the users agreed that it affected their number of20
trips.21

SUMMARY AND CONCLUSION22
This study analyzed e-scooter and bus transit usage in urban and university environments using23
different publicly-available datasets and a university campus-wide survey. We used a spatial model24
to assess the key variables affecting e-scooter origins and destinations. Results suggest that there25
is not enough evidence of transit trips impacts on e-scooter demand. Results from the university26
survey indicate that this area presents shorter e-scooter trips than the rest of the city. Instead of27
transit interaction, users within campus seem to be shifting from transit to e-scooter trips.28

Results and methods presented in this study can serve multiple purposes. First, from the29
transit agency and planers’ perspective, recognizing the significance of e-scooter and transit inter-30
action can help develop appropriate policies and measures to incentivize transit usage and can help31
one understand the role of e-scooters as a complement or supplement for public transportation ser-32
vices. Second, from the university officials’ perspective, understanding the trip characteristics and33
user opinions can help improve campus transportation options and assess the effectiveness of cam-34
pus safety measures. Finally, from a transportation research point of view, this study contributes to35
the scarce literature of e-scooter usage. We implemented advanced spatial models to characterize36
the principal factors affecting e-scooter demand.37

Although robust, the four spatial models implemented in this study were considered inde-38
pendent from each other. However, due to the possible correlation across models, a more appropri-39
ate approach would be to consider a spatial, seemingly unrelated regression (SUR). This method40
assumes that the four error terms are correlated (18), and can potentially improve the model estima-41
tion presented in this paper. Future research is needed to expand on the most appropriate methods42
to model this kind of information. Also, other limitations of this study include the lack of control43
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for the survey response rate and lack of randomness for the application of the survey. However, due44
to the large sample, we considered the survey responses representative of the university population.1
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