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Introduction

Ride-sourcing companies provide pre-arranged or on-demand

transportation service for compensation.

Objective

Analyze the spatial structure of ride-sourcing operational and

driver performance variables to support the need for new pricing

strategies.

Contributions

 Empirical evidence of spatial and temporal variation of driver
productivity variables as a function of trip destination.

 Temporal and spatial evaluation of different ride-sourcing
operational measures and search frictions in Austin, Texas.

* Implementation of a spatial denoising methodology to analyze high-
definition spatial variables.

Methodology

Ride-Sourcing Data

Austin-based TNC (Ride Austin) trips during the period that Uber and
Lyft were out of the city - from September 1, 2016, to April 13, 2017.

* Space: data 1s summarized over 1,305 traffic analysis zones (TAZs).

* Time: Weekday AM-peak, PM-peak, off-peak, and Weekend.
Description of variables

* Operational (based on trip origin)
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Figure: Driver time diagram
* Productivity, CBD-origin trips only (based on trip destination)
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Spatial Smoothing Approach

Analyzing operational and performance variables at a high-definition
spatial level requires additional data analytics methods. We propose the
use of a spatial smoothing or denoising technique that allows fine
resolution analysis and compensates for the inherent sampling noise.
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Smoothing
Assume that we have observations y;, each associated with a vertex s; € V in
an undirected graph G = (V, £) with node set V and edge set £.
Vi = X +€i, | = 1,...,7?,
where, x; is the “true” denoised signal and ¢&; is mean-zero error. Goal: find x.

Graph-Fused Lasso (GFL)

One way to estimate x is by using the GFL, defined by a convex optimization
problem that penalizes the first differences of the signal across edges.
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Where, 1 is the start node and s is the end node, n; is the count of trips observed within the
i-th TAZ, and 4 > 0 is the regularization parameter.
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Results

a) Reach time data
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Conclusions

Primary findings of this research suggest that there are differences 1n
space and time that can affect ride-sourcing search frictions and driver
productivity. Providing spatio-temporal pricing strategies could be one
way to balance driver equity across the network.
* Driver and operator point of view

More efficient driver supply method.
* Planners and engineer’s perspective

Understand the characteristics of the ride-sourcing service in Austin.
* Pricing strategies and policies

Warranty fair conditions in driver compensation.

collaborate. innovate. educate.



