

High-Definition Field Texture Measurements for Predicting Pavement Friction Presented at the 98th Annual Meeting of the Transportation Research Board, Washington, DC, January 2019.

Natalia Zuniga-Garcia, M.Sc. Jorge A. Prozzi, Ph.D.

January 15th, 2019

Cite as:

Zuniga-Garcia, N., and J.A. Prozzi. High-Definition Field Texture Measurements for Predicting Pavement Friction. Transportation Research Record, 2673(1), 246–260. https://doi.org/10.1177/0361198118821598.

Outline

- Introduction
- Methodology
- Statistical Analysis
- Results and Discussion
- Conclusions

Introduction

Motivation

- Monitoring and managing **skid resistance** properties are crucial activities to reduce the number of highway accidents and fatalities.
- Current methodologies to measure pavement surface friction present several disadvantages that make them impractical.
- It is necessary to evaluate alternative methods to estimate friction.

 $0.5 m < \lambda < 50 m$

 $50 mm < \lambda < 500 mm < \delta$

 $0.5 mm < \lambda < 50 mm$

 $\lambda < 0.5 mm$

Introduction

Skid resistance is the ability of the traveled surface to prevent the loss of tire traction.

- Macrotexture: Aggregate particles size and arrangement.
- **Microtexture:** Aggregate particles texture and mineralogy.

Low Speed

Introduction

Objective

Investigate the effect of different **texture** components and their parametric description on the **skid resistance** of a pavement surface.

Contributions

- 1. Evaluation of the effect of predicting skid resistance using both macrotexture and microtexture.
- 2. Quantification of different macrotexture and microtexture parameters.
- 3. Evaluation of texture and friction characteristic of different surface types.

Data Collection

- Measurements of friction and texture in the Texas highway network using different tests methods.
- Test sections included a broad range of friction coefficients and texture characteristics.
- Total number of field samples was twenty-four.
- Sampling: three different measurements at each section, with a separation of 15 m.

Friction and Skid Resistance

Texture

~2.5 km/h

Line Laser Scanner (LLS) Implementation

- Two-dimensional non-contact laser sensor.
- A prototype, called LLS, was developed to enable the laser to travel and capture three-dimensional data.
- Captures small changes in the height due to the texture irregularities.
- The sampling rate used is 8 μ m, and the total covered area is 120 x 3.26 mm.

COLLABORATE. INNOVATE. EDUCATE.

LLS Texture Characterization

- Macrotexture baseline: 100 mm | Microtexture baseline: 1.0 mm.
- Microtexture characterization only to the contact (active) area.
- Profiles were characterized using different parameters for the macrotexture and the microtexture, independently.

LLS Texture Characterization

Amplitude								
Mean Profile Depth (MPD)	$MPD = \frac{1}{2} \left[\max(h_1,, h_{N/2}) + \max(h_{N/2+1},, h_N) \right]$							
Height Average (R _a)	$R_a = \frac{1}{N} \sum_{i=1}^{N} h_i $							
Maximum Height (R _z)	$R_z = \max(h_i) - \min(h_i), i = 1N$							
Root Mean Square (RMS)	$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} h_i^2}$							
Skewness (R _{sk})	$R_{sk} = \frac{1}{RMS^3} \sqrt{\frac{1}{N} \sum_{i=1}^N h_i^3}$							
Kurtosis (R _{ku})	$R_{ku} = \frac{1}{RMS^4} \sqrt{\frac{1}{N} \sum_{i=1}^{N} h_i^4}$							
Hybrid								
Two Points Slope Variance (SV _{2pts})	$SV_{2pts} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{h_{i+1} + h_i}{\Delta x}\right)^2}$							
Six Points Slope Variance (SV _{6pts})	$SV_{6pts} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{h_{i+3} - 9 * h_{i+2} + 45 * h_{i+1} - 45 * h_{i-1} + 9 * h_{i-2} - h_{i-3}}{60 * \Delta x}\right)^2}$							
Where, $h_i =$ height value for coordinate "i"; N = number of coordinates; and $\Delta x =$ horizontal distance between coordinates.								

COLLABORATE. INNOVATE. EDUCATE.

- Simple linear regression (SLR) analysis cannot be used for the purpose of modeling friction based on the available texture data.
- A better relation was found when accounting also for the surface type.
- A panel data analysis was proposed.
- Incorporates the use of multiple regression analysis (MRA).

Statistical Analysis

We aggregated the samples by surface type and conformed five different HMA homogeneous groups.

- Type 1 (PFC1): Porous friction course 1
- Type 2 (PFC2): Porous friction course 2 and Novachip
- Type 3 (DG1): Dense-graded Type C
- Type 4 (DG2): Dense-graded Types D and F
- Type 5 (SMA): Stone matrix asphalt Type C

Statistical Analysis

Friction Models

- We proposed three friction models to evaluate the texture effect on friction.
- The **fixed-effect model** considers heterogeneity across surface-type groups and keeps "fixed" (holds constant) the average effect of the texture.

Model 1 (macrotexture only)	$Y_{Fr} = \beta_0 + \beta_{Macro} X_{Macro} + \sum_{i=i}^4 \beta_i X_{Type i}$	(1)
Model 2 (microtexture only)	$Y_{Fr} = \beta_0 + \beta_{Micro} X_{Micro} + \sum_{i=i}^4 \beta_i X_{Type \ i}$	(2)
Model 3 (macro and micro)	$Y_{Fr} = \beta_0 + \beta_{Macro} X_{Macro} + \beta_{Micro} X_{Micr} \\ \sum_{i=i}^{4} \beta_i X_{Type i}$	$r_{o} + \frac{1}{2}(3)$

Statistical Analysis

Results

- Confidence level selected was 95%, i.e., a significance level α =0.05
- $H_0: \beta_i = 0 \text{ and } H_a: \beta_i \neq 0$
- Fail to reject the null hypothesis if |t-stat| < |1.96| and/or p-value > 0.05

	Friction Measure											
Friction Model	British Pendulum Number (BPN)			Grip Number (GN)		Dynamic Friction Test 20 km/h (DFT20)			Dynamic Friction Test 60 km/h (DFT60)			
	β	t-stat (p-value)	R^2_{adj}	β	t-stat (p-value)	R^2_{adj}	β	t-stat (p-value)	R^2_{adj}	β	t-stat (p-value)	R^2_{adj}
Texture parameter: Mean profile depth (MPD)												
1-Macro	$\boldsymbol{\beta}_{ ext{macro}}$	2.533 (0.021)	0.357	$\boldsymbol{\beta}_{ ext{macro}}$	1.709 (0.106)*	0.338	$\boldsymbol{\beta}_{ ext{macro}}$	2.602 (0.018)	0.733	$\boldsymbol{\beta}_{ ext{macro}}$	2.786 (0.012)	0.609
2-Micro	$\boldsymbol{\beta}_{ ext{micro}}$	4.397 (0.000)	0.579	$\boldsymbol{\beta}_{ ext{micro}}$	3.491 (0.003)	0.548	$\boldsymbol{\beta}_{ ext{micro}}$	3.479 (0.003)	0.780	$\boldsymbol{\beta}_{ ext{micro}}$	4.472 (0.000)	0.735
3-Macro & Micro	$\boldsymbol{\beta}_{ ext{macro}}$	2.135 (0.048)	0.649	$\boldsymbol{\beta}_{ ext{macro}}$	1.047 (0.310)*	0.551	$\boldsymbol{\beta}_{ ext{macro}}$	2.136 (0.048)	0.816	$\boldsymbol{\beta}_{ ext{macro}}$	2.487 (0.024)	0.794
	$\boldsymbol{\beta}_{ ext{micro}}$	3.996 (0.001)		$\boldsymbol{\beta}_{ ext{micro}}$	3.008 (0.008)		$\boldsymbol{\beta}_{ ext{micro}}$	3.034 (0.007)		$\boldsymbol{\beta}_{ ext{micro}}$	4.148 (0.000)	

Using the MPD as Texture Parametric Description

* Note: the marked t-statistic and p-values represent the conditions of failing to reject the null hypothesis (|t-stat|<|1.96| and/or p-value>0.05).

MPD Parameter

Results

MPD Parameter

Results

Results

Evaluation of Different Texture Parameters

- Only the R_z parameter (maximum height) presented statistical significance for the GN and the DFT measures.
- The other six parameters do not seem to provide a good correlation with the friction measures.
- Only the parameters R_a , RMS and SV_2 , and SV_6 offer significant models for the GN values but not for the BPN and DFT values.
- The **MPD** appeared to be the best texture characterization parameter to model friction.

Conclusions

- There is not a unique relationship between texture and friction, its relation is strong, but it is different for each type of surface.
- A measure of microtexture should be included into friction models based on texture.
- There is a need to provide standard procedures for uniform and comparable microtexture characterization techniques.
- MPD was the most significant parameter.

Future work

- Include a wider variety of surfaces and friction measuring techniques.
- Develop equipment to capture microtexture at highway speed.
- Evaluation using the Locked Wheel Tester and the GripTester, these devices use higher testing speeds and simulate better real conditions.

Questions or Comments? nzuniga@utexas.edu

THANKS