

Transit Performance and Reliability Evaluation for Arterial Corridors Presented at the Transportation Planning Applications Conference (TRBAppcon), Portland, OR, June 2019.

Natalia Zuniga Garcia, M.Sc. Randy B. Machemehl, Ph.D. Natalia Ruiz-Juri, Ph.D. Heidi W. Ross, M.Sc. Nadia Florez-Morcote, M.Sc.

June 2019

Cite as:

Zuniga-Garcia, N., N. Ruiz-Juri, N. Florez-Morcote, H.W. Ross, and R.B. Machemehl. Transit Performance and Reliability Evaluation for Arterial Corridors. Transportation Planning Applications Conference (TRBAppcon), Portland, OR, June 2019.

THE UNIVERSITY OF TEXAS AT AUSTIN Center for transportation research

Outline

- 1. Background
- 2. Introduction
- 3. Case Study
- 4. Metrics
- 5. Future Work

Background

Corridor Mobility Program

- Development, design, and construct improvements along key Austin corridors that enhance mobility, safety, and connectivity for all users.
- Recommendations supported by identifiable **metrics** to prioritize:
 - a) reduction in congestion
 - b) improved level of service for all modes of travel
 - c) connectivity, and improved effectiveness of transit operations

Background

Our Role

Generate performance metrics for bond corridor evaluation by practitioners

- 1. Identify current and future data sources
- 2. Complete back office system architecture capable of ingesting data from multiple sources
- 3. Develop a tool that uses data from multiple sources to calculate key performance metrics

Introduction

Recent advances in ITS transit data-collection allow evaluation of multiple operational variables.

Problem • Digesting and understanding the large amount of complex data available

• For arterial corridors: the presence of different traffic control systems, multiple transit routes, and multimodal interaction

Objective

Develop an evaluation tool to provide **transit performance and reliability** information for arterial corridors in Austin, Texas.

Case Study

Metrics: Tool Development

Measurable Impacts

Transit Speed Ridership Occupancy Dwell Time

Delay Volume-to-Capacity Ratio Reliability Service Coverage Frequency

Metrics: Transit Speed on Corridors

- Speed estimated using AVL data
 - GPS points (location & time stamp) for all buses
- Average speed through the corridor
 - Difference in time stamps over distance
 - Distance is corridor length covered by bus trajectory
- Challenges:
 - GPS points are provided every 1-2 minutes
 - The results may not be representative of the entire corridor
 - Different routes cover different corridor segments
 - Dwell times are included in travel time

Metrics: Transit Speed on Corridors

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Metrics: Occupancy

11/14

Metrics: Boardings and Alightings

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Metrics: Dwell Time

Future Work

- Estimate bus trajectory
 - Integrate AVL and APC
 - Update speed estimation
- Estimate bus on-time performance
 - Integrate GTFS and APC

THANKS

Questions or Comments? nzuniga@utexas.edu