

Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors

Presented at the 97th Annual Meeting of the Transportation Research Board, Washington, DC, January 2018.

Natalia Zuniga-Garcia, M.Sc. Heidi W. Ross, M.Sc. Randy B. Machemehl, Ph.D.

January 6th, 2018

Cite as:

Zuniga-Garcia, N., H.W. Ross, and R.B. Machemehl. (2018). Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors. Transportation Research Record, 2672(15), 142–154. https://doi.org/10.1177/0361198118776112.

Outline

- Introduction
- Multimodal Level of Service Methodologies
- Case Study: Austin, Texas
- Results and Discussion
- Conclusions

Introduction

- Level of service (LOS) has been expanded beyond automobiles (MMLOS).
- No nationally accepted method for a unique performance measure.
- Limitation for planning projects that consider all modes.

Introduction

Objective

Evaluate the multimodal performance of arterial corridors using currently available MMLOS methodologies.

Contributions

- (1) Comprehensive review of available MMLOS methodologies.
- (2) Evaluation and contrasting of MMLOS approaches with a case study.
- (3) Insights on the multimodal evaluation procedures for arterial corridors.

	Transit Capacity	Mathad	Mode*		
Highway Capacity Manual (HCM)	and Quality of Service Manual	and Quality of Niethod Service Manual Pedestrian I		Bicycle	Transit
	(TCQSM)	НСМ	Х	Х	
	Pedestrian & Bicycle Environmental Quality Indices (PEQI & BEQI)	TCQSM			Х
Charlotte's Urban Streets Design Guide (USDG)		Charlotte's USDG	Х	Х	
		PEQI & BEQI	Х	Х	
	D' 1	BCI		Х	
Level of Traffic Stress (LTS)	Compatibility	LTS		Х	
50035 (115)	Index (BCI)	DI	Х	Х	Х
Deficiency Index (DI)	Walk Score®, Bike Score®, and Transit Score®	Walk Score® Bike Score® Transit Score®	Х	Х	Х

*Automobile LOS is the most developed methodology and has uniform acceptance. Therefore, it is not included above.

НСМ

- 2010 (5th) edition includes multimodal analysis framework using information about demand, control, and geometry
- Letter score range: A to F

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

TCQSM

(Transit counterpart to the HCM)

- Distinguishes between demandresponsive and fixed-route
- Applied at a street-segment level
- Letter score range: A to F

Charlotte's USDG

(Developed by the City Council of Charlotte, North Carolina)

- Adds or subtracts points for the presence or absence of features
- Scores range from 0 to 100 and then converted into an A to F range

PEQI & BEQI

(Developed by The San Francisco Department of Public Health)

- Relies on observational surveys using checklists
- Scored on a scale from 0 to 100

Neighborhood: Surv			Surveyed	i By:	Surve	y Date:		
Project: Date E		Date Ent	ered into Database:					
				INTE	RSECTIONS			
Intersection	CNN #:				Primary Street:			
					Secondary Street:			
	1.Crosswalk	2.Ladder	3. Ped	estrian	rian 7 No Turn on Red Sig			
		Crosswalk	Sig	nal		10	3	1
		C. Coowalk	WITH	NO		- M-	1	
			count-	count-				
			down	down		1	4	
4 Directions						2		
3 Directions								
2 Directions					8. Intersection Traffic	0 TCF	s	
1 Direction					Calming Features	1-2 T	Fs	
None					(TCFs).*	3-4 T	CFs	
					(5 or m	ore TCEs	
					Check all that apply:*	14.41.11		
4 Signal et	Intersection:	Yes			* See PEOI manual for i	llustratione	definitions	
					Bike Lane at			
		No			intersection	Round	labouts	
	If Yes - Cross	sing Time: (s	econds)					
		- (-	,		Curt and and and an half			
					Curb extensions or built	iouts Semi-	diverters	
					Mini-Gircles	Speed	numps	
Internection	Longth	(Feet, walking al	ong		Destial Classes		Tables	
intersection	congin:	Primary Street)			Parual Ciosures	speed	Tablés	
5. Crossing	Speed:	Faster than 3	.5 ft/sec		Pavement Treatments			
(Length, feet /)	Crossing Time,	Slower than 3	3.5 ft/sec					
seconds)		1						
6. Crosswal	k Scramble:	Yes			9. Additional Signs for	r Yes		
		No			Pedestrians:	No		
				9	TREETS			
Street:					ICNN #			
Cross Stree	t #1·				Cross Street #2			
Domain:		Indicator:		Indicator	Values:		Comment	e:
Vehicle Trat	fic	10 Number	of	4 + 1 2000			Johnell	
Vernere ITal		10. Number or 4 + Lane		3 9009	,	-		
	(3)	Lanes:	mine only	O Lanes		-		
		(not including turning only 2 Lan		Z Lanes				
lanes)			1 Lane					
		1		INO Lanes		1		

COLLABORATE. INNOVATE. EDUCATE.

Level of Traffic Stress (LTS)

(Developed by The Mineta Transportation Institute)

- Used by Oregon DOT and StreetScore+, among other agencies
- Score types: LTS1, LTS2, LTS3, and LTS4

	Level of Traffic Stress				
Single right-turn lane up to 150 ft. long and having an intersection angle and	LTS ≥ 2				
Single right-turn lane longer than 150 straight, and having an intersection ar	LTS ≥ 3				
Single right-turn lane in which the bike radius are such that turning speed is	LTS ≥ 3				
Single right-turn lane with any other co with an option (through-right) lane.	LTS = 4				
Sneed Limit of Street Being	Wid	th of Street Being Crossed	ed		
Crossed	Up to 3 lanes	4 - 5 lanes	6+ lanes		
Up to 25 mph	LTS 1	LTS 2	LTS 4		
30 mph	LTS 1	LTS 2	LTS 4		
35 mph	LTS 2	LTS 3	LTS 4		
40+	LTS 3	LTS 4	LTS 4		
	Wid	th of Street Being Crossed			
Speed Limit of Street Being Crossed	Up to 3 lanes	4 - 5 lanes	6+ lanes		
Up to 25 mph	LTS 1	LTS 1	LTS 2		
30 mph	LTS 1	LTS 2	LTS 3		
35 mph	LTS 2	LTS 3	LTS 4		
40+	LTS 3	LTS 4	LTS 4		

Bicycle Compatibility Index (BCI)

- Uses linear regression model
- Geometric and operational characteristics
- Score range: A to F

COLLABORATE. INNOVATE. EDUCATE.

Deficiency Index (DI)

- Classifies features into physical, operational, and intermodal groups
- DI values are averaged per feature group, then per mode
- Score range: 0 to 18

Mode	Characteristics to Describe Physical Features	Characteristics to Describe Operational Features	Characteristics to Describe Intermodal Features
Auto	ς; lane width (3.0) ς; presence of parking (3.3) ς; presence of median (3.1) ς; frequency of median breaks (3.2) ς; frequency of driveways (3.7)	c; vehicle volume/capacity ratio (4.2) c; average travel speed (3.7) c; signal progression (4.1) c; number of vehicle stops (4.1) c; travel time reliability (3.6) c; incident recovery time (3.6)	C; delay caused by transit (2.4) C; delay caused by pedestrians (2.4) C; delay caused by bicycles (2.0)
Transit	 c; percent of transit stops with shelters (3.1) c; percent of transit stops with benches (2.9) c; maintenance quality of transit stops (3.0) 	c; headway (4.2) c; transit travel time (3.7) c; headway variability (4.1) c; passenger crowding (3.4) c; hours of operation (3.9)	c; delay caused by auto mode (3.5) c ₂ : accessibility by pedestrians (3.8) c ₃ : accessibility by bicycles (2.8)
Pedestrian	c; existence of sidewalks (4.6) c;-width of sidewalks (3.6) c;-condition of sidewalks (3.5) c;-distance from vehicular traffic (3.5) c;-trossing conditions (4.3) c;-tADA accessibility (3.5)	c, pedestrian volume/capacity ratio (2.8) c,; midblock crossing delay (3.3) c,; intersection crossing delay (3.8)	c_i auto impact on pedestrians (4.1) c_j transit impact on pedestrians (2.8) c_j bicycle impact on pedestrians (2.2)
Bicycle	c; existence of bicycle lane (4.2) c; width of outside through lane (3.7) c; travel lane parement quality (3.8) c; width of shoulder (3.9) c; shoulder pavement quality (3.8) c; presence of auto parking (3.7)	c_r bicycle comfort (2.8) c_p intersection crossing delay (3.3) c_p bicycle speed (2.8)	c_i auto impact on bicycles (4.4) c_p transit impact on bicycles (2.9) c_g pedestrian impact on bicycles (2.2)

Walk, Bike, and Transit Score® (Developed by Front Seat Management)

- Web-based tools
- Uses a variety of data sources (e.g. Google, Localeze, U.S. Census)
- Scored on a scale from 0 to 100

COLLABORATE. INNOVATE. EDUCATE.

Case Study: Austin, Texas

- Airport Boulevard (1.1-mile segment)
- Includes four major signalized-intersections:
 - Aldrich Street/Wilshire Boulevard
 - East 38th 1/2 Street
 - Manor Road
 - East Martin Luther King Jr. (MLK) Boulevard
- Applied at intersection and street-segment level

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Case Study: Austin, Texas

Pedestrian Level of Service

Note: The X-axis represents the corridor. Thus, links and intersections are intercalated.

Bicycle Level of Service

Note: The X-axis represents the corridor. Thus, links and intersections are intercalated.

Transit Level of Service

Note: The X-axis represents the corridor. Thus, links and intersections are intercalated.

Method	Pros	Cons		
НСМ	· Evaluates both intersection and links	• Not easy to apply		
	· Considers interaction of modes	 Requires training and technical knowledge 		
	 Strong research background 	· Requires detailed data collection		
TCQSM	• Easy to apply using the spreadsheet tool			
	· Considers interaction of modes	• Requires detailed data collection		
	· Strong research background	conection		
Charlotte's <i>USDG</i>	• Easy to apply using the spreadsheet tool	Deeg net eveluete link segmen		
	· Detailed intersection assessment	· Does not evaluate link segments		
PEQI & BEQI	· Evaluates both intersection and links	• Bicycle intersection assessment		
	• Easy to apply	only considers three features		
	· Requires minimal basic training	• Subjective scale of application		
LTS	• Easy to apply			
	\cdot Evaluates both intersection and links	• Does not evaluate pedestrian		
	· Does not requires intense data collection			

Method	Pros	Cons
BCI	• Easy to apply	• Does not evaluate intersections
	• Does not requires intense data collection	• Does not evaluate pedestrian and transit
Deficiency Index (DI)	 Evaluates pedestrian, bicycle, and transit using comparable measures 	· Requires technical knowledge
	· Considers interaction of modes	• Subjective scale of application
	 Can be used in conjunction with other methods 	
Wally Saama	 Evaluates pedestrian, bicycle, and transit using comparable measures 	 Not sensitive to infrastructure deficiencies (e.g. lack of bike lane or sidewalk)
Bike Score®	• Easy to apply	· Methodology not reproducible
Fransit Score®	• Does not requires data collection process	
	· Evaluates both intersection and links	

Conclusions

- The multimodal analysis should be applied separately for each mode.
- Aggregation of results to one overall LOS requires judgement in terms of weighting modes, and therefore biases results.
- *HCM* and *TCQSM* allow a technical methodology that is replicable and comparable. Therefore, provide a MMLOS assessment that is suitable for a corridor evaluation.
- The DI is the most robust method. However, it requires technical knowledge and its application is subjective to user expertise. It is recommended to be used in combination with other methods.

Questions or Comments? nzuniga@utexas.edu

THANKS