Evaluating Spatial Pricing in Ride-Sourcing Systems

Natalia Zuniga-Garcia

Mauricio Tec James G. Scott Natalia Ruiz-Juri Randy B. Machemehl

The University of Texas at Austin

INFORMS Annual Meeting Phoenix, AZ

November 5th, 2018

Outline

Introduction

- Background and Motivation
- Objectives and Contributions
- Ø Methodology
 - Ride-Sourcing Data
 - Description of Variables
- Spatial Smoothing Approach
 - Background
 - Graph-Fused Lasso
- 4 Results
 - Operational Variables
 - Productivity Variables
- Onclusions

Introduction

Ride-sourcing companies or TNCs, provide pre-arranged or on-demand transportation service for compensation.

Background

From **drivers** perspective, trips may be mispriced relative to other trip opportunities, leading to inefficiencies on a network level:

- Loss of service reliability
- Limit long-term driver participation

Recent research efforts have addressed ride-sourcings spatial mispricing problem with the objective of reducing *search frictions*¹ using:

- Spatial surge pricing models
- Spatio-temporal pricing mechanisms
- Search and matching models
- Non-linear pricing models

¹Imbalance between driver supply and passenger demand across geographic areas that causes the presence of high matching and reaching times.

Introduction

Motivation

- Methods focused on the optimization of the platform revenue and do not evaluate the driver perspective
- Limited evidence on the driver opportunity cost of the trip destination
- Lack of understanding of the spatial structure of driver productivity²
- Limited empirical evaluations

Objective

Analyze the spatial structure of ride-sourcing operational and driver performance variables to support the need for new pricing strategies.

We explore the spatial structure of ride-sourcing search frictions and driver performance variables as a function of the trip destination.

 $^{^{2}}$ We define the driver productivity in terms of profit per unit time.

Introduction

Analyzing operational and performance variables at a high-definition spatial level requires additional data analytics methods. We propose the use of a spatial smoothing or denoising technique that:

- Allows fine resolution analysis
- Compensates for inherent sampling noise
- Enhances interpretability

Contributions

- Empirical evidence of spatial and temporal variation of driver productivity variables as a function of trip destination.
- Provide a statistical evaluation of different ride-sourcing operational measures and search frictions in Austin.
- Implementation of a spatial denoising methodology to analyze high-definition spatial variables.

Methodology

Ride-Sourcing Data

Austin-based TNC (Ride Austin) trips³ during the period that Uber and Lyft were out of the city.

- Space discretization
 - Data is summarized over 1,305 traffic analysis zones (TAZs)
 - ▶ TAZ areas vary from 0.01 km^2 in the Central Business District (CBD) to 30 km^2 in the rural area, with an average of 2 km^2

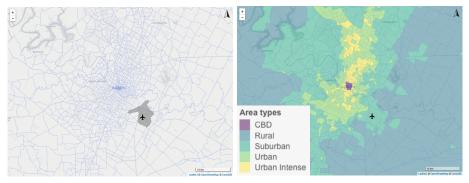
Time discretization

- Weekday AM-peak
- Weekday PM-peak
- Weekday off-peak
- Weekend

³https://data.world/ride-austin

Methodology

Ride-Sourcing Data



(a) TAZs in Austin (airport shaded)

(b) TAZ area types

Figure: Description of TAZs

Methodology Ride-Sourcing Data

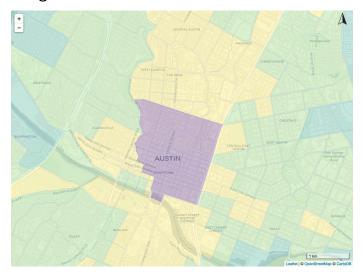


Figure: TAZ area types (downtown)

Natalia Zuniga-Garcia (UT-Austin) Spatial Pricing in Ride-Sourcing Systems Nov

Methodology

Description of variables

• Operational (based on trip origin)

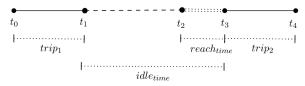


Figure: Driver time diagram

• Productivity, CBD-origin trips only (based on trip destination)

$$Productivity \mathbf{A} = \frac{fare_{trip_1}}{t_1} \tag{1}$$

$$Productivity \mathbf{B} = \frac{f \, ur \, e_{trip_1}}{t_3} \tag{2}$$

9 / 21

Productivity
$$\mathbf{C} = \frac{fare_{trip_1} + fare_{trip_2}}{t_4}$$
 (3)

Background

- Typically used for a wide range of applications:
 - Predicting crime hotspots
 - Detecting crash hotspots
 - Special event detection
- Approaches types:
 - Local
 - Smooth only a local window around each point.
 - Gaussian smoothing, average a point over its neighboring values, thus removing noise by blurring.

Global

- Define an objective function over the entire graph and simultaneously optimize the whole set of points.
- Total variation denoising or fused lasso, removes noise by emphasizing edges.

Smoothing

Assume that we have observations y_i , each associated with a vertex $s_i \in \mathcal{V}$ in an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with node set \mathcal{V} and edge set \mathcal{E} .

$$y_i = x_i + \epsilon_i, \quad i = 1, \dots, n, \tag{4}$$

where, x_i is the "true" denoised signal and ϵ_i is mean-zero error.

The goal of the smoothing techniques is to estimate x_i in a way that leverages the assumption of spatial smoothness over the underlying graph.

Graph-Fused Lasso

One way to estimate x is by using the GFL, defined by a convex optimization problem that penalizes the first differences of the signal across edges.

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \ell(\mathbf{y}, \mathbf{x}) + \lambda \sum_{(r,s) \in \mathcal{E}} |x_r - x_s|,$$
(5)

where, ℓ is the loss function, r is the start node and s the end node, $n = |\mathcal{V}|$, and $\lambda > 0$ is the regularization parameter.

- Equation 5 does not have a closed-form solution. Convex optimization approaches are required.
- We implemented the method developed by Tansey and Scott (2015)⁴, which leads to an efficient approach that presents a fast and scalable solution.

 $^{^4} Tansey,$ W., & Scott, J. G. (2015). A fast and flexible algorithm for the graph-fused lasso. arXiv preprint arXiv:1505.06475.

Loss Function

ľ

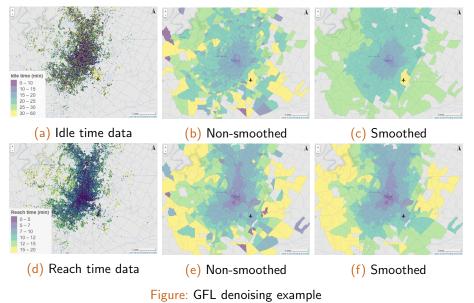
Penalized weighted least squared-error loss function to take into account the differences in the number of observations within each zone.

$$\underset{\mathbf{x}\in\mathbb{R}^{n}}{\text{ninimize}} \quad \sum_{i=1}^{n} \frac{\eta_{i}}{2} (y_{i} - x_{i})^{2} + \lambda \sum_{(r,s)\in\mathcal{E}} |x_{r} - x_{s}|$$
(6)

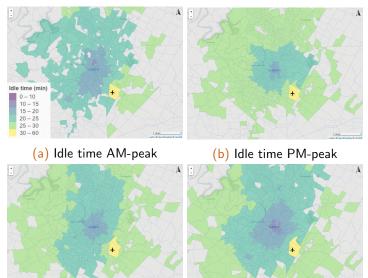
Where, η_i is the count of trips observed within the *i*-th TAZ.

Choosing the Regularization Parameter

- Split the data into a training and a test set
- Estimate the out-of-sample prediction error using the root mean square error (RMSE) criterion



Results - Operational Variables



(c) Idle time off-peak

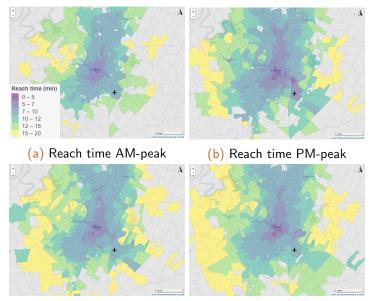
(d) Idle time weekend

Natalia Zuniga-Garcia (UT-Austin)

Spatial Pricing in Ride-Sourcing System

November 5th, 2018 15 / 21

Results - Operational Variables



(c) Reach time off-peak

Natalia Zuniga-Garcia (UT-Austin)

Spatial Pricing in Ride-Sourcing System

November 5th, 2018 16 / 21

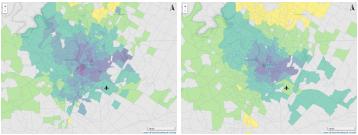
(d) Reach time weekend

Results - Productivity Variables



(a) Prod. A AM-peak

(b) Prod. A PM-peak



(c) Prod. A off-peak

(d) Prod. A weekend

Natalia Zuniga-Garcia (UT-Austin)

Spatial Pricing in Ride-Sourcing System

November 5th, 2018 17 / 21

Results - Productivity Variables

(a) Prod. B AM-peak

(b) Prod. B PM-peak

(c) Prod. B off-peak

(d) Prod. B weekend

Natalia Zuniga-Garcia (UT-Austin)

patial Pricing in Ride-Sourcing Systems

Results - Productivity Variables

(a) Prod. C AM-peak

(b) Prod. C PM-peak

(d) Prod. C weekend



(c) Prod. C off-peak

Natalia Zuniga-Garcia (UT-Austin)

patial Pricing in Ride-Sourcing Systems

Conclusions

Primary findings of this research suggest that there are differences in space and time that can affect ride-sourcing search frictions and driver productivity. Providing spatio-temporal pricing strategies could be one way to balance driver equity across the network.

- Driver and operator point of view More efficient driver supply method.
- Planners and engineers perspective Understand the characteristics of of the ride-sourcing service in Austin.
- Pricing strategies and policies Warranty fair conditions in driver compensation.

Thanks!

Questions or Comments? nzuniga@utexas.edu

21 / 21