Laboratory Design of Quieter Asphalt Surfaces

The University of Texas at Austin

Natalia Zuniga-Garcia Andre de Fortier Smit Manuel Trevino Prasad Buddhavarapu Jorge A. Prozzi

November, 2015

Introduction

- Develop laboratory procedures to measure noise generated by surfacing materials.
- Low-noise pavement surfaces are a cost-effective option to reduce traffic noise.

PFC TOM

Introduction

- Permeable Friction Course PFC
- Percent of air voids is at least 18 percent
- Designed to achieve good drainability
- Thin Overlay Mixture TOM
- Non-structural preventive maintenance
- Can be laid at 1.0 to 0.5 inches thick and consist of quality aggregate and binder materials
- Minimum asphalt content of 6.0 or 6.5 percent

Highway Traffic Noise Tire-Pavement Noise

Pavements in noise mitigations.

Flexible Pavement

Surface Texture Surface Porosity

Surface Stiffness Other Factors

Rigid Pavement

Surface Texture

Finishing

Tire-Pavement Noise Surface texture

Both macrotexture and megatexture influence in road

noise.

Macrotexture
 is mainly
 influenced by:

- Gradation
- Degree of compaction

Tire-Pavement Noise Macrotexture

- Mean Profile Depth MPD - ASTM E1845
- MPD is the average value of the mean segment depths for all segments of the measured profile

Tire-Pavement Noise Macrotexture and Gradation

- Noise database from data collected on asphalt pavements tested in Texas and at the National Center for Asphalt Technology (NCAT) test track.
- The results of the statistical analysis suggest that to reduce noise, the design should focus more on producing mixtures with reduced macrotexture.
- Adjusting the gradation of the mixture may have a significant effect on noise production, but this effect may not be of practical significance and the effect is minor compared to that of macrotexture.

Tire-Pavement Noise Macrotexture and Gradation

- The best correlation was found between MPD and percentage passing the #4 sieve (4.75 mm).
- This relation provides a simple estimation of surface macrotexture in terms of mixture gradation and suggests an increase for coarser mixes and a decrease as the fines in the mix increase.

MPD=1.7-0.0164*P4

Laboratory Procedure Test implementation

- Developed specifically to allow the design of quieter pavement surfaces in the laboratory before applying these in the field.
- Modification of the standard ASTM E303 procedure: Measuring Surface Frictional Properties Using the British Pendulum Tester (BPT).
- Process similar to wayside noise measurements.
- A sound pressure level meter is placed 4 inches from the contact of the rubber slider and the surface, and 3 inches above the surface of the specimen.

Laboratory Procedure Test implementation

Laboratory Procedure Macrotexture Measurement

Laser Texture Scanner LTS

Laboratory Test Results

- Samples of Texas gyratory compacted TOM specimens were fabricated.
- Mixture related parameters were varied to observe its influence in noise generating.

Laboratory Test Results

Gradation influence

Laboratory Test Results

Asphalt Content

Noise vs. AC

MPD

Conclusions

- With the test implemented it was possible to accurately measure noise in different type of surfaces and provide a repeatable and standard procedure that can use laboratory compacted samples and field cores, which allows further field validation.
- PFC has been the low noise mixture of choice. However, evidence from field trials indicates that PFC mixtures in Texas become significantly louder with time.
- TOM has a proven record of excellent performance as a surface overlay mixture in Texas. In contrast to PFC, noise in TOM mixtures is not overly sensitive to variations in aggregate gradation or asphalt content.

Thank you