CHARACTERIZATION OF PAVEMENT TEXTURE BASED ON MACROTEXTURE ANALYSIS

Faculty Advisor: Dr. Jorge A. Prozzi Graduate Student: Natalia Zuniga-Garcia Undergraduate Student: Tiffany Tang

Significance

- About 70,000 crashes in 2016 were caused by wet roads in the state of Texas (TxDOT).
- Goal: Improve techniques for characterizing pavement based on surface macrotexture analysis

Why is Surface Texture important?

- Controls road friction
- Affects tire traction
- Low-friction sections are dangerous
- Estimate Friction Conditions of roads

Surface Texture Tests

- 1. Sand Patch Test
- 2. Circular Track Meter (CTM)
- 3. Line Laser Scanner (LLS)

Calculations

$$MTD = \frac{4V}{\pi D^2}$$
(2)

where:

- MTD = mean texture depth of pavement macrotexture, in. (mm),
- $V = \text{sample volume, in.}^3 (\text{mm}^3), \text{ and}$
- D = average diameter of the area covered by the material, in. (mm).

Data Collection

Data Collection

Section 3

Section 4

Data Collection – Line Laser Scanner

- Each point in the profile has a separation of 0.225 mm.
- 446 points are used to get profiles of 100 mm each.

Total of 10 Profile Lines

- 5 from C Region
- 5 from G Region

Data Processing - MPD (LLS) Estimation

FIG. 1 Procedure for Computation of Mean Segment Depth

-		
In	[19]:	<pre>profile = signal.detrend(z[4,:]) # Assume the profile is 100 mm</pre>
	:	
	:	<pre>def MPD_estimate(x):</pre>
	:	# Input
	:	# x: a 100 mm texture profile in an 1D array
	:	# Output:
	:	# MPD in mm as float number
	:	
	:	rows=np.shape(x)[0]
	:	<pre>max1 = np.max(x[0:int(rows/2)])</pre>
	:	<pre>max2 = np.max(x[int(rows/2+1):rows])</pre>
	:	<pre>MPD = np.average([max1, max2])</pre>
	:	return MPD
	:	
	:	
	:	MPD_estimate(profile) # call the function
Out	t[19]:	0.90644560870525215

* Written in Python for MPD Estimation

Data Processing - MPD Profile Processing

Results- Section 1

Average MPD (LLS) , mm	Average MPD (CTM) , mm	Percent Error
0.6585	0.6075	8.39 %

s = 0.0415

 $s^2 = 0.0017$

CTM Results

Section G: 0.7800 mm Percent Error: 21.6282 %

Profile Number	MPD (mm)
1	0.6070
2	0.6682
3	0.5697
4	0.5755
5	0.6360
Average	0.6113

CTM Results Section C: 0.4775 mm Percent Error: 47.7906 %

Profile Number	MPD (mm)
1	0.6866
2	0.6532
3	0.6104
4	0.6838
5	0.8946
Average	0.7057

s = 0.1100

 $s^2 = 0.0121$

Results- Section 2

Average MPD (LLS) , mm	Average MPD (CTM) , mm	Percent Error
0.5299	0.4875	8.69 %

s = 0.1111

 $s^2 = 0.0123$

Average

0.5431

CTM Results Section G: 0.4425 mm Percent Error: 18,2153 %

Profile Number	MPD (mm)
1	0.4296
2	0.4546
3	0.4906
4	0.4994
5	0.7089
Average	0.516

Results- Section 3

Average MPD (LLS) , mm	Average MPD (CTM) , mm	Percent Error
0.8794	0.8675	1.37 %

CTM Results

Section C: 0.8275 mm Percent Error: 4.5921%

<i>s</i> = 0.0268
$s^2 = 0.0007$

Profile Number	MPD (mm)
1	0.8711
2	0.8786
3	0.8182
4	0.8834
5	0.8761
Average	0.8655

Section G: 0.8175 mm Percent Error: 9.2722%

Profile Number	MPD (mm)
1	0.7350
2	0.9176
3	0.8789
4	1.0284
5	0.9064
Average	0.8933

Results- Section 4

Average MPD (LLS) , mm	Average MPD (CTM) , mm	Percent Error
2.8223	2.3175	21.78 %

s = 0.5453

 $s^2 = 0.2974$

LLS- C Region

Profile Number	MPD (mm)
1	3.0019
2	2.8557
3	2.5869
4	-
5	-
Average	2.8148

lumber	MPD (mm)	CTM Results
	3.0019	Section C: 2.7800 mm
	2.8557	Percent Error: 1.2518 %
	2.5869	
	-	
	-	<i>s</i> = 0.2105
age	2.8148	$s^2 = 0.0443$

LLS-G Region

Profile Number	MPD (mm)
1	3.3930
2	2.2035
3	2.5131
4	3.4118
5	2.6272
Average	2.8297

CTM Results Section G: 2.7125 mm Percent Error: 4.3207 %

Results- Summary

	Sand Patch, mm	MPD (CTM), mm		
Section	MTD	Average C & G	Region C	Region G
1	0.93	0.6075	0.4775	0.7800
2	0.51	0.4875	0.5800	0.4425
3	1.07	0.8675	0.8275	0.8175
4	2.45	2.3175	2.7800	2.7125

Laser	Section	Average of C & G	Average C	Average G
		(mm)	(mm)	(mm)
	1	0.65850	0.70574	0.61126
	2	0.52986	0.54309	0.51662
	3	0.87937	0.86548	0.89326
	4	2.82228	2.81484	2.82972

- CTM and the LLS Scanner were able to get relatively the same results
- Small Differences in pavement surface have major impact on overall MPD.

3

• Several tests of the same area is needed for accuracy

Future Work

- Conduct more field tests to determine accuracy and eliminate issues with the tests

- Model Friction and skid resistance
- Use CTM and LLS to scan same surface and analyze for similarities in MPD

Acknowledgements

Research Team: Natalia Zuniga-Garcia, Joaquin Hernandez, Christina C. and Yorguo Elhachem

Faculty Advisors: Dr. Machemehl and Dr. Prozzi,

THANK YOU!

Questions or Comments?